Winter 2017 Undergraduate Calendar


PHYSICS: COURSES

Not all courses listed will necessarily be offered in each year.


64-130. Introductory Physics for Life Sciences I
This is an algebra-based course intended for students interested in the biological or health sciences, or related disciplines. The topics covered include the basic mechanical concepts of force, work and energy, properties of matter, and heat, with examples and applications drawn from the modeling of biological systems. (Prerequisites: one 4 “U” or OAC mathematics course or equivalent.) (3 lecture hours a week, 2 laboratory hours and 1 tutorial hour every week) (Anti-requisites: 64-134, 64-140 and 64-144 .) Open to students in Human Kinetics, Forensic Science, Bachelor of Arts and Science, and all programs within in the Faculty of Science; exceptions only with the permission of the Head or designate.

64-131. Introductory Physics for Life Sciences II
This course is a continuation of 64-134 intended for students interested in the biological or health sciences, or related disciplines. The topics covered include wave motion, sound, electricity and magnetism, light, and an introduction to topics in modern physics involving the life sciences such as the quantum nature of radiation and its interaction with biomolecules, high energy radiation and radioactivity, and the statistical treatment of data. (Prerequisite: 64-130 or 64-140.) (3 lecture hours per week, 1 tutorial hour and 2 laboratory hours every week.) (Antirequisites: 64-135, 64-141, 64-145.) (Open to students in Human Kinetics, Forensic Science, Bachelor of Arts and Science, and all programs within in the Faculty of Science; exceptions only with the permission of the Head or designate.)

64-140. Introductory Physics I
Mechanics; properties of matter and heat. A calculus-based course. (Prerequisites: Grade 12“U” Advanced Functions and Introductory Calculus or equivalent.) Recommended co-requisite: 62-140.) (3 lecture hours a week, 2 laboratory hours and 1 tutorial hour every week). Open to students in Human Kinetics, Forensic Science, Bachelor of Arts and Science, , and all programs within in the Faculty of Science; exceptions only with the permission of the Head or designate. (Antirequisites: 64-130, 64-134, and 64-144).

64-141. Introductory Physics II
Wave motion, sound, electricity and magnetism, light, and modern physics. (Prerequisite: 64-140 or 85-111.) (3 lecture hours per week, 1 tutorial hour and 2 laboratory hours every week.) Antirequisites: 64-145, 64-131, 64-135.) (Open to students in Engineering, Human Kinetics, Forensic Science, Bachelor of Arts and Science, and all programs within in the Faculty of Science; exceptions only with the permission of the Head or designate.)

64-151. From Symmetry to Chaos in the Universe: An Introduction to Theoretical Methods in Contemporary Physics
An introduction to the pillars of 20th and 21st century physics which form the basis of subsequent courses in physics and the basis of current research: complexity and chaos, special and general relativity, quantum phenomena, symmetry and symmetry breaking, and cosmology. Motivated by these pillars, mathematical tools and techniques that are used extensively in physics for practical problem solving and data analysis are introduced at a first-year level. Computer-aided graphical and approximate computational methods will also be introduced. (Prerequisites: 64-140, 62-140, and 62-120) [3 lecture hours and one tutorial hour per week.]

64-190. Introduction to Astronomy I
The solar system with emphasis on the results of recent space exploration. This is a descriptive course suitable for the non-scientist. (May be taken by B.Sc. students for credit, but does not count as a Physics course or other science course towards the fulfillment of the requirements for the B.Sc. degree.) (2 lecture hours a week.)

64-191. Introduction to Astronomy II
The stars, galaxies, including pulsars, black holes, and quasars. Current theories of the structure of the universe will be discussed. This is a descriptive course suitable for the non-scientist. (May be taken by B.Sc. students for credit, but does not count as a Physics course or other science course towards the fulfillment of the requirements for the B.Sc. degree.) (2 lecture hours a week.)

64-202. Physics and Society-The Past
Discoveries in astronomy have altered the way we perceive ourselves, our planet, and our place in the universe. This course, ‘From Antiquity to Newton’, reviews the contributions made by the Egyptians, Babylonians, Greeks, and Islamic cultures, together with medieval Christian views and on to the emergence of modern science. The course - which is a blend of physics, history, philosophy and religion - will also examine how we came to move from ‘geocentric’ to a ‘heliocentric’ view of the solar system, by examining the contributions of Copernicus, Brahe, Kepler, Galileo and Newton. (2 lecture hours a week.) Does not count towards the major requirements for a degree in the Department of Physics.

64-203. Physics and Society-The Present
Modern society is dominated by the dramatic development of physics and technology from the industrial revolution to the present. This development and its impact on society are explored in the course. A number of topics of current interest such as, nuclear energy, world energy supplies, pollution, global warming, climate change, and possible solutions to the energy crisis are discussed in detail. This course gives students who are majoring in the arts, humanities, business, law, and biomedical sciences an introduction to modern ideas in Physics and to see how these ideas affect our day-to-day lives. (2 lecture hours a week.) Does not count towards the major requirements for a degree in the Department of Physics.

64-220. EM Fields and Photons
Electrostatic fields and potentials. Charges and capacitance. Currents and conduction in solids. Magnetic fields; induction; introduction to Maxwell equations, electromagnetic waves, and photons; the photoelectric effect. (Prerequisite: 64-141, or 85-124, or equivalent.) (3 lecture, 3 laboratory hours a week.)

64-222. Optics
Geometrical optics: review of laws of reflection and refraction; lenses and mirrors (matrix optics); stops, optical systems, aberrations. Introduction to wave optics; interferometry, diffraction, polarization, Fresnel equations, elements of dispersion theory. (Prerequisites: 64-141 and 62-141.) (3 lecture, 3 laboratory hours a week.)

64-250. Mechanics
Newton's Laws, Galilean transformations, rotating reference frames, conservation laws, angular momentum and torque, driven oscillators with damping, dynamics of rigid bodies, inverse square forces, Lorentz transformation, relativistic kinematics and dynamics. (Prerequisite: 64-141, and 62-141 or equivalent; recommended: 62-120 or 62-125.) ( 3 lecture hours, 1 tutorial hour a week.)

64-298. Co-op Work Term I
Supervised experience in an approved career-related setting with a focus on the application of theory and the development of transferable skills. The co-op work experience is designed to provide students with an enriched learning opportunity to integrate academic theory and concepts in an applied setting. (Prerequisite: Student must be enrolled in a co-operative education program. Offered on a Pass/non-Pass basis. Supervised practicum requires the successful completion of a minimum of 420 hours. Students who do not pass the course can not continue in the co-op program.)

64-310. Quantum Physics and Chemistry
Classical and quantum physics, relativistic physics, black-body radiation, photoelectric effect, Compton scattering, atomic structure, Schroedinger equation, particle in a box, harmonic oscillator, conduction in solids; semiconductor and superconductor devices. (Prerequisites: 62-215 and 62-216 or equivalents.) (3 lecture, 3 laboratory hours a week.)

64-311. Atomic and Molecular Spectra
Introduction to atomic and molecular spectroscopy, hydrogen and helium atoms, perturbation theory, isotopes; introduction to nuclear physics. (Prerequisites: 64-310 or 64-314, 62-215, and 62-216, or equivalents.) (3 lecture, 3 laboratory hours a week.)

64-314. Quantum Physics and Chemistry
(Same as 64-310 without the laboratory.) Classical and quantum physics, black-body radiation, photoelectric effect, Compton scattering, atomic structure, Schroedinger equation, particle in a box, harmonic oscillator, conduction in solids; semiconductor and superconductor devices. (Prerequisites: 62-215 and 62-216 or equivalents.) (3 lecture hours a week.)

64-315. Atomic and Molecular Spectra
(Same as 64-311 without the laboratory.) Introduction to atomic and molecular spectroscopy, hydrogen and helium atoms, perturbation theory, isotopes; introduction to nuclear physics (Prerequisites: 64-310 or 64-314, 62-215, and 62-216 or equivalents.) (3 lecture hours a week.)

64-320. Electromagnetic Theory
Electrostatics, potential theory, boundary-value problems, multipole expansion, electrostatics of ponderable media, magnetostatics, electromagnetic induction, Maxwell's equations. (Prerequisites: 62-215, 64-220.) (Corequisite: 62-216.) (3 lecture hours a week.)

64-323. Electromagnetic Waves
Maxwell's equations in macroscopic media, gauge invariance; electromagnetic waves in a relativistic formulation; propagation, refraction, and reflection at dielectric and metal interfaces; polarization, Stokes parameters; Fourier analysis; transmission lines, wave guides, relativistic dynamics of charges in external fields. (Prerequisites: 64-222, 64-320, and 62-360) (3 lecture, 3 laboratory/tutorial hours a week.)

64-350. Classical Mechanics I
Dynamics of particles and systems of particles; Newtonian mechanics in the Lagrangean formulation; variational principles, conservation laws; symmetry and Noether's theorem; two-body central forces, scattering; small oscillations. (Prerequisites: 64-250, 62-215, and 62-216 or equivalents.) (3 lecture hours, 1 tutorial hour a week.)

64-351. Classical Mechanics II
Rotational motion, non-inertial frames; rigid-body rotations, inertia tensor, Euler's equations, chaotic systems. Hamiltonian formulation; canonical transformations; Poisson brackets, symmetry groups; Hamilton- Jacobi theory; Schroedinger equation. (Prerequisite: 64-350.) (3 lecture hours, 1 tutorial hour a week.)

64-370. Introduction to Medical Physics
Physical principles and experimental techniques applied to medicine and biology. Applications of x-rays and gamma rays in medical diagnosis and therapy. Physical principles of lasers, ultrasound, and magnetic fields in mapping structures. Physical techniques for the diagnosis and therapy of the human body. This course is intended to be of interest to students in Biology and Chemistry/Biochemistry, as well as Physics. (Prerequisite: 64-140 and 64-141, or the consent of the instructor.) (3 lecture hours a week)

64-398. Co-op Work Term II
Supervised experience in an approved career-related setting with a focus on the application of theory and the development of transferable skills. The co-op work experience is designed to provide students with an enriched learning opportunity to integrate academic theory and concepts in an applied setting. (Prerequisite: Student must be enrolled in a co-operative education program. Offered on a Pass/non-Pass basis. Supervised practicum requires the successful completion of a minimum of 420 hours. Students who do not pass the course can not continue in the co-op program.)

64-412. Research
Design, researching, execution and managing, analysis, and reporting (Written and oral) of a supervised physics project in a recognized research laboratory, on- or off-campus. This is a problem-based course with emphasis on team work. Students must present three seminars discussing their research project: on background, on the research plan, and a final seminar accompanying a written report containing the main results, conclusions, and suggestions for further work. With departmental approval, the research may be applied toward partial fulfillment of the M.Sc. degree. (Prerequisites: 64-151) (1 lecture hour, 12 laboratory hours per week over two terms) (6.0 credit hours).

64-420. Classical Electrodynamics
Conservation laws, Bremsstrahlung scattering of radiation, multipole radiations fields, Liénard-Wiechert potentials, Green functions, radiation reaction, Lorentz-Dirac equation, radiation from time-dependent currents. (Prerequisites: 64-320 and 64-323.) (3 lecture hours a week.)

64-431. Introduction to Statistical Mechanics
Thermal equilibrium, diffusive equilibrium; Boltzmann and Gibbs distributions, canonical and grand canonical partition functions; thermodynamics from statistical mechanics, entropy, work, heat; Helmholtz free energy, Gibbs free energy, enthalpy, Gibbs-Duhem relation, equations of state, Maxwell relations, response functions; Planck distribution and thermal radiation, Fermi-Dirac distribution and the Fermi gas, Bose-Einstein distribution and the Bose gas, ideal gas; chemical reactions; binary mixtures; phase transitions; elementary kinetic theory. (Prerequisites: 59-240, 64-310 or 64-314, 64-311 or 64-315, and 59-340 (for Chemistry students only).)

64-450. Quantum Mechanics I
Probability amplitudes and transformations; operators and physical observables; symmetries and conservation theorems; time-development operator and Dyson expansion; two-state systems, density matrices; perturbation theory and the variational method; identical particles, spin, the Thomas-Fermi atom. (Prerequisites: 64-315, 64-350, and 62-360 or consent of instructor.) (3 lecture hours a week.)

64-460. Condensed-Matter Physics
Elements of crystallography, crystal diffraction, reciprocal lattices, lattice dynamics and thermal properties of solids, phonons, solution of Schroedinger equation in periodic potential, band theory, Fermi surfaces of metals and semiconductors, optical properties of dielectrics. (Prerequisite: 64-314 or consent of instructor.) (3 lecture hours a week.)

64-463. Special Topics in Physics
Advanced topics in contemporary physics. (Prerequisite: to be determined according to the topic.) (May be given as a seminar course , or as a directed, self-study course.) (May be repeated for credit when the topic is different.)

64-464. Special Techniques in Health Physics
This course consists of a variety of specialized topics involving the applications of the principles of physics to the study and characterization of living tissues, and the detection and treatment of pathological conditions. Topics will include the applications of acoustic microscopy, computational and statistical methods in medical physics, nanotechnology, and the interaction of ionizing radiation with living tissue. Course may be repeated when the topic is different. (Prerequisite: 64-370, or the consent of the instructor.) (3 lecture hours a week.)

64-470. Radiological Physics
Radioactive decay schemes, interaction of photons with matter, linear and mass attenuation coefficients, stopping power for charged particles, radiation detection and instrumentation. The course will include clinical experience. (Prerequisite: 64-370, or the consent of the instructor.) (3 lecture, 3 lab hours a week.)

64-471. Introduction to Medical Imaging
The course will cover a broad range of modern imaging techniques and their theoretical foundations, such as ultrasound, planar x-ray imaging, computer tomography (CT) imaging, magnetic resonance imaging (MRI), positron emission tomography (PET), and radionuclide molecular imaging. The course will include practical laboratory experience at the University of Windsor, and at the Windsor Regional Cancer Centre. (Prerequisite: 64-370, or the consent of the instructor.)(3 lecture, 3 lab hours a week.)

64-484. Design and Application of Lasers
Stimulated emission, rate equation approach to amplification and output power calculations; Gaussian beams, stable and unstable resonators, Q-switching, mode-locking and cavity dumping, ruby, Nd:YAG and other solid-state lasers, semi-conductor, gas and dye lasers. (Prerequisites: 64-311 or 64-220, and 64-222, or three years of Electrical Engineering or Engineering Materials, or equivalent.) (3 lecture hours a week.)

64-496. Technical Communication Skills
Introductory lectures and workshops on technical writing and instruction, followed by supervised instruction of first-year Physics students in 64-151, and projects in writing resumes and technical manuals and in preparing a multimedia computer module for a problem area in physics instruction. The computer module can employ any suitable combination of Maple, C++, Visual Basic, HTML, Java. (Prerequisite: 64-151.) (2 lecture, 2 laboratory honours a week.)

64-498. Co-op Work Term III
Supervised experience in an approved career-related setting with a focus on the application of theory and the development of transferable skills. The co-op work experience is designed to provide students with an enriched learning opportunity to integrate academic theory and concepts in an applied setting. (Prerequisite: Student must be enrolled in a co-operative education program. Offered on a Pass/non-Pass basis. Supervised practicum requires the successful completion of a minimum of 420 hours. Students who do not pass the course can not continue in the co-op program.)