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Abstract

De Broglie waves are a simple consequence of special relativity ap-
plied to the complex-phase oscillations of stationary states. As de Broglie
showed in his doctoral thesis, the synchronized oscillations of an extended
system at rest, even a classical one, become de Broglie-like waves when
boosted to �nite velocity. The waves illustrate the well-known but seldom
demonstrated relativistic e¤ect of clock desynchroniation (or dephasing)
in moving frames. Although common manifestations of stationary-state
oscillations in interference experiments are sensitive only to energy dif-
ferences, de Broglie wavelengths are inversely proportional to rest-frame
oscillation frequency, and their observed values require that the oscillation
frequencies are proportional to the the total absolute energy, including the
rest component mc2:

1 Introduction

The wave nature of matter as predicted by Louis de Broglie in his doctoral
dissertation of 1924[1, 2] has formed an accepted cornerstone of quantum me-
chanics ever since electrons[3, 4] and later neutrons[5] were di¤racted by crystals
and thin �lms. Di¤raction and interferometry has also con�rmed the de Broglie
wavelength relation for atoms[6, 7, 8, 9, 10, 11] and molecules as large as C60 and
C70 fullerenes[12, 13]. The advent of Bose-Einstein condensates has provided
new tools for studying matter waves, such as laser-like sources of atoms[14] to
enhance observations of di¤raction and interference in atomic systems.
As well documented, de Broglie based his suggestion of matter waves on an

analogy with the wave-particle duality in electromagnetic waves/photons. His
proposal[15] was that a free particle of mass m is subject to a perodic oscillation
of frequency �0 = mc2=h in its rest frame, where h = 2�~ is Planck�s constant
and c is the speed of light. The phase of the oscillation in the rest frame can be
written 2��0� � !0�; where � is the time in the rest frame, also called the proper
time of the particle. By application of a Lorentz boost (velocity transformation),
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de Broglie showed[1, 2] that the phase can be expressed in coordinates (t;x) of
the lab frame, where the particle moves with velocity v; by

!0� = !0
�
t� v � x=c2

�
;

with the Lorentz factor  =
�
1� v2=c2

��1=2
: As discussed in more detail below,

the result is a wave of phase !t�k � x whose spacetime wave vector k = e0!=c+k
is proportional to the spacetime momentum p = Ee0=c + p of the massive
particle:

p = ~k: (1)

Here e0 is unit displacement on the time axis. Relation (1) is identical to that
relating the momentum p of a photon to the wave vector k of its associated
electromagnetic wave.
Note that p and k are vectors in a four-dimensional Minkowski spacetime.

They are sometimes called �4-vectors�, �world vectors�, or �paravectors�[16]
to distinguish them from common spatial vectors in three-dimensional physical
space. Relation (1) thus implies an equality both of time components along e0,
giving E = ~!; and of spatial components along the spatial axes e1; e2; e3; giving
p = ~k. The spatial part gives the de Broglie wavelength � = 2�= jkj = h= jpj ;
with all its well-veri�ed physical implications.
The phase velocities of waves for massive particles are superluminal: != jkj =

E= jpj > c; and this caused de Broglie initially to regard these waves as ��ctitious.�[15]
He showed that the actual particle velocity is given by the subluminal group
velocity d!=d jkj = c2 jkj =! of the wave, and that if the rest-frame oscillations
are synchronized over an extended region in the rest frame, the phase velocity
must be > c to keep in step with the moving particle in the lab.
De Broglie�s work spawned a revolution in quantum theory. A linear su-

perposition of de Broglie waves gives the wave function of Schrödinger wave
mechanics.[17] De Broglie�s approach[1] relating Hamilton�s principle and the
principle of least action for quantum waves the way Fermat�s principle relates
wave and geometric optics also presaged the path-integral formulation of quan-
tum theory[18] and Feynman�s popular presentation of it.[19] It may also be of
historical interest that de Broglie, searching for a more physical interpretation
of his waves, developed his �double solution theory�[20, 21], in which the su-
perluminal waves act to guide the particle in a manner closely related to the
causal formulation of quantum mechanics developed by Bohm in his determin-
istic non-local (�hidden-variable�) theory.[22, 23]
This communication points out that any in-phase oscillations of an extended

system in the rest frame imply de Broglie-like waves in other inertial frames. The
waves arise from the essential relativistic property that time is not universal.
This property has the e¤ect of dephasing or desynchronizing the clocks in a
moving frame. The e¤ect is required in order that phenomena such as time
dilation and Lorentz contraction depend only on relative velocity. It causes
clocks at di¤erent positions that all read the same time in the rest frame to
read di¤erent times when viewed at an instant from a frame in relative motion.
While in his Ph.D. thesis[1], de Broglie left unspeci�ed the physical nature of
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the underlying oscillations, he drew spacetime diagrams similar to one below to
illustrate the phenomena. We can now associate the rest-frame oscillations with
the complex phase of any stationary state. De Broglie waves are a necessary
consequence of such oscillations and special relativity.
The explanation, although hardly ever mentioned in texts, gives a simple

picture of the superluminal phase wave and provides an important example of
clock desynchronization and the way that simultaneity depends on the observer
frame. It is also noteworthy that the wave has the correct de Broglie wave-
length if and only if the oscillation frequency of the stationary state times the
Planck constant is the rest energy mc2 of the system. This hypothesis of de
Broglie has thus been well con�rmed by experiment. It seems surprising that
this beautiful yet powerful picture of de Broglie waves is not better known. This
communication is designed to help remedy the situation.

2 Stationary States

With the hindsight of Schrödinger�s quantum theory, developed in the two years
following de Broglie�s thesis, we can associate the rest-frame oscillations assumed
by de Broglie with the time dependence of the complex phase of stationary
states. These are energy eigenstates  of the Hamiltonian H; satisfying H =
E0 ; which are required by the time-dependent Schrödinger equation

i~
@ 

@�
= H ; (2)

to have the oscillatory time dependence

 (s; �) =  (s; 0) e�i!0� (3)

with !0 = E0=~; where s indicates (possibly generalized) spatial position vari-
ables. The entire system described by  is seen to oscillate synchronously in
phase, independent of position s: Such states are the quantum analogs of normal
(or natural) modes of vibration of an extended classical system. The form of the
Hamiltonian H is not important here, and indeed as will be seen, de Broglie-like
waves appear even with classical vibrations. The only essential property is that
all parts of the system oscillate together and in phase in its rest frame. One
can use the phase of the oscillation at any location to measure time, and as
de Broglie suggested[2], we can think of each point in the extended system as
containing a �phase clock�that is synchronized with all others throughout the
system in the rest frame. The rest frame of the quantum system can be de�ned
as the frame in which the total momentum of the system vanishes. Of course
constituent parts of the system can still be interacting and in relative motion.
The proper time � of the system is the time in its rest frame and can be taken
as the time displayed on the phase clocks.
There is strong experimental support for the existence of oscillations in quan-

tum systems as described by the complex phase of the stationary-state wave-
function, but most physical measurements are based on interference phenomena
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that are sensitive only to energy di¤erences. In such cases, it is immaterial
whether or not the eigenenergy E0 includes the rest energy mc2 or any other
additive constant. However, De Broglie waves allow the additive constant to be
determined.

2.1 De Broglie Waves

Special relativity tells us how to transform phenomena from any inertial frame
to another. Let an active boost be applied to the system initially at rest so
that after the transformation it moves with a constant net velocity v in the
lab. (Since only the relative motion of the system and the inertial observer is
signi�cant, the result is the same as if the system is held �xed and the observer
is boosted to velocity �v:) A position in the system before the boost can be
described by a vector s = c�e0 + s in four-dimensional spacetime, with a time
component on e0 as well as a spatial part s. It is the position in the rest frame,
that is, as seen by an observer at rest with respect to the system. In particular,
� is the time in the rest frame, also known as the proper time of the system.
The position s is boosted to the spacetime position x = cte0 + x in the lab
frame, given by[24]

x =  (c� + v � s=c) e0 + 
�
sk + v�

�
+ s?; (4)

in terms of the components of s parallel (k) and perpendicular (?) to v; sk =
s � v̂ v̂ = s� s? with v̂ = v= jvj : The spacetime origins of the two frames are
taken to be equal: s = 0 at x = 0:
The inverse transformation is given by exchanging x and s and reversing the

sign of v :

s =  (ct� v � x=c) e0 + 
�
xk � vt

�
+ x?: (5)

In particular, the time � in the rest frame, as recorded on the phase clocks, is
the component of s on e0 divided by c;

� = 
�
t� v � x=c2

�
; (6)

where t is the lab time. This part of the Lorentz transformation epitomizes
what makes special relativity interesting and often nonintuitive. Under Galilean
transformations, time is universal and would be the same in both rest and lab
frames: � = t: In special relativity, however, time in one frame depends on
both time and position variables in the other. Relation (6) can also be simply
obtained from an expression of � as the Lorentz invariant formed from the scalar
product of spacetime vectors x and the proper velocity uc =  (ce0 + v) : In the
notation of Refs. [16, 24] we can write

c� = hx�uiS = h(cte0 + x)  (e0 � v=c)iS =  (ct� v � x=c) :

This shows the dephasing e¤ect in the moving system: at a given instant t in the
lab frame, the proper time � in the rest frame depends on the clock position x
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and becomes progressively earlier at positions further in the direction of motion.
Since � is the time on the phase clocks, this shows that clocks synchronized in
the rest frame become dephased or desynchronized in the lab, as illustrated in
Fig. 1. What in the rest frame is a synchronized oscillation in time is seen in
the lab to be a wave in space.

v

v = 0

Figure 1: De Broglie waves result from the relativistic desynchronization of
�phase clocks�as seen from a frame in which the clocks are moving. About one
wavelength is shown for the quantum system moving with a net velocity v:

The e¤ect, we emphasize, is purely relativistic. The phase of the oscillation
is the phase of the de Broglie wave by de�nition. In a nonrelativistic (Galilean)
transformation of the velocity of the system, time would be universal and the
phase clocks would remain synchronized. Any phase wave would have in�nite
wavelength. Under a Lorentz boost, however, time is not universal and clocks
are desynchronized or dephased. The dephasing e¤ect is distinct from time
dilation. Time dilation is another relativistic e¤ect, and it slows the rate of
every moving clock by the same factor so that the period of the clock grows
from �0 in the rest frame to �0 when seen in the lab. However, it is not the
change in clock speed but the fact that the time displayed on the moving clocks
depends on their position along v that gives the de Broglie wave. There is a
connection between time dilation and clock dephasing: If synchronized clocks
in one frame remained synchronized in the other, time dilation would not be
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consistent with the relativity principle that only the relative velocity between
frames matters. It is only because of clock desynchronization that observers
in relative motion can both consistently hold that the other�s clocks are time
dilated and hence running too slow.
The stationary-state oscillations, when expressed in the spacetime coordi-

nates of the lab, in which the system has net velocity v; takes the form of a
wave

 ! L 
�
x? + xk � vt; 0

�
e�i!0(t�v�x=c

2): (7)

The Lorentz operator L for the boost may mix spinor components of  but it
is the phase !0

�
t� v � x=c2

�
that gives the wave. If the dependence of  on

position s in the rest frame is gradual compared to its oscillations, the resulting
wave is approximately a plane wave of the de Broglie form. Its wavelength, the
distance over which the phase changes by 2�, is seen to be � = 2�c2= ( jvj!0) :
This agrees with the experimentally con�rmed de Broglie wavelength � = h= jpj
if and only if

jpj = m jvj = ~ jvj!0=c2;
that is, if and only if mc2 = ~!0 so that, as de Broglie hypothesized, the
oscillations occur at what is now known as the Zitterbewegung frequency (as-
sociated with the interference of positive and negative-energy solutions of the
Dirac equation).[25] The result justi�es the more general relation p = ~k be-
tween spacetime vectors. As mentioned above, the mass of a composite sys-
tem includes the internal energies of interaction and motion. An alternative
derivation[26] of the de Broglie relation starts by equating the group velocity of
the wave with the particle velocity. This gives the �rst-derivative form

d!

d jkj = jvj =
dE

d jpj :

By putting E = ~!; one sees that within an additive integration constant jpj =
~ jkj : This derivation does not �x the absolute energy and does not even require
relativity. It is consistent with, but not as complete as, the requirement of special
relativity applied to a synchronized oscillation in the rest frame.
It is important to recognize that the de Broglie wavelength � is not that of

the wave traced out by an oscillator moving at speed jvj : For a given angular
frequency ! in the lab, the oscillations would trace out one wavelength during
each period 2�=! of oscillation, giving a wavelength 2� jvj =! proportional to the
speed. This of course also gives the relation for an arbitrary wave of wave speed
jvj = �!= (2�) ; and it implies that in the rest frame (v = 0), the wavelength
vanishes. However, the de Broglie wavelength becomes in�nite in the rest frame.
Only through the relativistic dephasing of oscillations do de Broglie waves arise,
and for them, � and hence the wave velocity is inversely proportional to the
matter speed jvj :
The physical signi�cance of the superluminal phase velocity and its relation

to clock dephasing is seen in the spacetime diagram of Fig. 2. In the rest frame,
the time axis is vertical and lies along the world line of the center of momen-
tum of the system. Ticks (cycles) of the phase clocks occur in the rest frame
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Figure 2: The hypersurface of constant phase represents an instant of time
� in the rest frame. The slope of this hypersurface on the spacetime diagram
corresponds to the superluminal phase velocity in the lab. The line at 45 degrees
is the light cone.

on horizontal hypersurfaces at regular intervals of �0 = 2�=!0 simultaneously
throughout the spatial distribution of the state. In the lab frame where the
system moves with a net velocity v; the time axis of the rest frame becomes
u0 =  (e0 + v=c) ; which is the proper velocity in units of c: The world line
of any �xed point of the rest frame is parallel u0; which is tilted toward the
lightcone with a slope of c= jvj : Hypersurfaces representing a given instant � in
the rest frame are tilted upward toward the lightcone by an equal angle. Thus,
the slope of the rest-frame spatial axis u1; which lies in such a hypersurface,
is jvj . The clock phases are the same everywhere on this hypersurface. The
spatial hypersurfaces corresponding to a given instant in the lab, on the other
hand, are horizontal, and the phase varies periodically along the direction of v
on these surfaces. The constant phase on tilted hypersurfaces of �xed � repre-
sents a plane wave propagating with superluminal wave velocity c2= jvj in the
lab. This constitutes the de Broglie wave.[20] The horizontal distance between
successive intersections of the tilted hypersurfaces for � = n�0; n = 0; 1; 2; : : :
with any horizontal hypersurface is the distance needed for the phase to change
by 2�; it is just the de Broglie wavelength. The period of the phase wave is
the time T0 = �0= given (when scaled by c) by the vertical separation of the
hypersurfaces. The time component of a clock path over one cycle is the period
of the clock; in the lab it has the dilated value �0:
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2.2 Conclusions

De Broglie matter waves are a natural and necessary consequence of the clock
dephasing that accompanies a boost of an extended stationary state, whose
oscillations are in phase in its rest frame. Hypersurfaces of constant phase are
tilted in the lab frame and seen as phase waves with de Broglie wavelengths
moving at superluminal velocity. Although most of the experimental evidence
for the existence of stationary-state oscillations is based on interference that is
sensitive only to energy or wave-vector di¤erences, di¤raction from �xed gratings
con�rms the absolute de Broglie wavelengths. These, in turn, require that
stationary-state oscillations occur at a frequency corresponding to the total
energy of the system, including its rest energy mc2:
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