The stabilization and reactivity of strained cyclic alkynes on transition metal centres

Martin A. Bennett

Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia

Abstract - Small cycloalkynes that are short-lived or unknown in the free state can be stabilized by coordination to low-valent transition metal fragments such as ML₂ (M = Ni, Pt; L = various tertiary phosphines) or ZrCp₂(PMe₃). The preparation and reactivity of some of the resulting compounds, including Pt(PPH₃)₃(cyclopentayne), ZrCp₂(benzynne)(PMe₃), ML₂(benzynne) (M = Ni, Pt; L = PEt₃, PPr₃, PCy₃), and Nix(C₂P₂H₂CH₂PCy₂)₂(u-1,4-benzdiyne), are discussed.

INTRODUCTION

A recurring theme in the development of organo-transition metal chemistry is the stabilization of highly reactive organic and inorganic fragments on a transition metal centre. An outstanding example is the short-lived, anti-aromatic hydrocarbon cyclobutadiene, the iron tricarbonyl complex of which is so stable that it undergoes typical aromatic substitution reactions. If required, free cyclobutadiene can be generated from this complex by treating it with oxidizing agents such as ceric ion (ref. 1). Other molecules that can be stabilized by coordination to metal centres include carbenes, carbynes, phosphaalkynes and P₃. In most cases the short-lived fragment is not generated in the free state and trapped by the metal complex, but is generated on the metal centre from coordinated precursors.

The fact that most of the d-block elements from stable alkyne complexes suggests that it should be possible to stabilize small ring acetylenes by complexation. The smallest unsubstituted carbocyclic alkyne that can be isolated in the free state is cyclooctyne. Its smaller homologues cycloheptyne, cyclohexyne and cyclopentyne exist as transient, highly reactive molecules that oligomerize rapidly, although they can be trapped with reactive dienes (ref. 2-4). Probably the most well-known member of this class is benzynne (1,2-didehydrobenzene), formed by the removal of two adjacent substituents on a benzene ring (ref. 2,5,6). Benzynne is an intermediate in many aromatic substitution reactions of halogenobenzenes, but because it reacts readily with nucleophiles, it cannot be trapped with a reactive diene such as 2,5-diphenylisobenzofuran in these experiments unless a poorly nucleophilic base such as LiTMP is employed (eq 1) (ref. 7). Benzynne can also be generated by other methods including the reduction of o-dihalogenoarenes and the thermal decomposition of zwitterions such as benzenediazonium-7-carboxylate, and can be trapped by addition of reactive dienes (ref. 2,5,6). Similar methods are used for generating cycloalkynes (ref. 2-4).

METAL COMPLEXES OF SMALL CYCLOALKYNES

Stable platinum(0) complexes of cycloheptyne and cyclohexyne Pt(PPH₃)₃(C₇H₁₀) (1) and Pt(PPH₃)₃(C₆H₈) (2), are obtained by reduction of the appropriate 1,2-dibromocycloalkenes with 1% sodium amalgam in the presence of Pt(PPH₃)₃ (ref. 8) (eq. 2).

1695
We have also isolated the cyclohexyne complexes PtL(C₆H₅) (L = PBu₃Ph₂, PBU₅Ph) by a similar reaction in which Pt(PPh₃)₂ is replaced by the two-coordinate complexes PtL₂ (ref 9). The original idea behind these experiments was that the action of 1% sodium amalgam on the 1,2-dibromocycloalkenes would generate the free cycloalkyne, and that this would be trapped by the Pt(0) complex. An obvious alternative is that the 1,2-dibromocycloalkene oxidatively adds to the Pt(0) complex and that the resulting adduct is reduced by 1% sodium amalgam to give the cycloalkyne complex. Attempts to prepare the cyclopentene or benzene analogues of 1 and 2 by procedures similar to those of eq 2, starting from 1,2-dibromocyclopentene or dibromobenzene respectively, were unsuccessful.

Recently we have found that 1,2-dibromocyclohexene oxidatively adds to Pt(PPh₃)(C₂H₄) at room temperature to give cis-PtBr(C₆H₅Br)(PPh₃) (3), and that this isomerizes to the corresponding trans-compound 4 in refluxing xylene (Fig. 1)(ref. 10). Neither 3 nor 4 is reduced by 1% sodium amalgam to 2, so these compounds cannot be intermediates in the formation of 2.

![Fig. 1. Oxidative addition of 1,2-dibromocyclohexene to Pt(PPh₃)(C₂H₄)](image)

1,2-Dibromocyclopentene also reacts with Pt(PPh₃)(C₂H₄) at room temperature, but in this case the first isolable product is the colourless, crystalline olefin complex Pt(PPh₃)(C₅H₅Br,C₆H₅Br) (5), the structure of which has been confirmed by X-ray crystallography (ref. 11). Migration of bromine from carbon to platinum occurs slowly in dichloromethane to give the cis-oxidative addition product, cis-PtBr(C₅H₅Br)(PPh₃) (6), and this isomerizes in refluxing xylene to the trans-compound 7 (Fig. 2). As in the six-membered ring series, neither of the oxidative addition products is affected by 1% sodium amalgam. In contrast, the olefin complex 4 is reduced cleanly by 1% sodium amalgam to give a colourless, very reactive solid that we formulate as the cyclopentene complex Pt(PPh₃)(C₅H₅) (8) (eq. 3) This observation suggests that the seven and six-membered ring analogues of 5, Pt(PPh₃)(1,2-dibromocycloheptene) and Pt(PPh₃)₂(1,2-dibromocyclohexene) respectively, may be the key intermediates in the preparation of 1 and 2 in eq. 2, although they have never been detected.

![Fig. 2. Reaction of 1,2-dibromocyclopentene with Pt(PPh₃)(C₂H₄)](image)
Stabilization and reactivity of strained cyclic alkynes

TABLE 1. Comparison of NMR data for Pt(PPh$_3$)$_2$(cycloalkyne)

<table>
<thead>
<tr>
<th>Pt(PPh$_3$)$_2$(cycloalkyne)</th>
<th>C7H${10}$ (1)</th>
<th>C$_5$H$_6$ (2)</th>
<th>C$_7$H$_6$ (8)</th>
</tr>
</thead>
<tbody>
<tr>
<td>δ(J$_{PtC}$)</td>
<td>29.4(3420)</td>
<td>28.3(3406)</td>
<td>28.0(3437)</td>
</tr>
<tr>
<td>δ(alkyne C)(J$_{PtC}$)</td>
<td>124.0(318)</td>
<td>131.6(395)</td>
<td>155.5(436)</td>
</tr>
</tbody>
</table>

2 appears as a 5-line AA'X pattern owing to coupling with 31P

As expected, the Pt(PPh$_3$)$_2$(cycloalkyne) complexes become increasingly reactive as the ring becomes smaller. Cycloheptyne complexes such as Pt(PPh$_3$)$_2$(C$_7$H$_{10}$) and Pt(dppe)(C$_5$H$_6$) are readily protonated even by weak acids such as water or methanol to give 31P-

cyclohexenylplatinum(II) complexes (ref. 8, 14)(eq. 4). The cyclopentenyne complex 8

behaves quite differently. Instantaneously on treatment with methanol at room temperature, or more slowly in THF, it undergoes P-Ph bond cleavage of one of its PPh$_3$ ligands to give a dinuclear complex 9 which, as shown by X-ray crystallography, contains bridging PPh$_2$ and cyclopentene-1,2-diyl(μ-C$_5$H$_5$) groups (eq. 5) (ref. 11).

As the 31P chemical shifts and Pt-P coupling constants for the cycloalkyne complexes 1, 2 and 8 remain almost constant, the alkyne 13C chemical shifts and Pt-C coupling constants increase with decreasing ring size (Table 1). If we assume that J_{PtC} correlates with the 6s-character of the bonding orbital used by platinum, the trend is consistent with the expected increase in metallacyclopentene character in the platinum-cycloalkyne interaction as the ring becomes smaller.

Whereas the infrared spectroscopic data are in agreement with this conclusion. The ν(C=C) frequency of 8 is remarkably low (1623 cm$^{-1}$) and suggests that the coordinated C=C distance in 8 may be very close to that of a double bond. The corresponding C=C distances in 1 and 2 (1.29 Å) are clearly longer than those in unstrained alkynes (1.21 Å) but are shorter than those in olefins (1.33 Å), and qualitatively this is reflected in the ν(C=C) values for these complexes (1700-1800 cm$^{-1}$). A rough measure of the perturbation of the alkyne on coordination is provided by $\Delta$$\nu$(C=C), the difference between the C=C frequencies of the free and coordinated alkynes. The ν(C=C) value of cycloheptyne has been measured in an argon matrix (ref. 12), but those of the smaller cycloalkynes are not known experimentally; they have, however, been estimated from ab-initio calculations (ref. 13). As shown in Table 2, $\Delta$$\nu$(C=C) decreases with decreasing ring size, perhaps indicating that the smaller cycloalkynes undergo less distortion on coordination than do the larger cycloalkynes.

TABLE 2. Comparison of IR data for cycloalkynes & their Pt(PPh$_3$)$_2$ complexes

<table>
<thead>
<tr>
<th></th>
<th>C7H${10}$</th>
<th>C$_5$H$_6$</th>
<th>C$_7$H$_6$</th>
</tr>
</thead>
<tbody>
<tr>
<td>ν(C=C) (Complex)</td>
<td>1770(1)</td>
<td>1721(2)</td>
<td>1623(8)</td>
</tr>
<tr>
<td>ν(C=C) (free ligand, singlet state)</td>
<td>2121</td>
<td>2003</td>
<td>1828</td>
</tr>
<tr>
<td>$\Delta$$\nu$</td>
<td>351</td>
<td>282</td>
<td>205</td>
</tr>
</tbody>
</table>

As expected, the Pt(PPh$_3$)$_2$(cycloalkyne) complexes become increasingly reactive as the ring becomes smaller. Cycloheptyne complexes such as Pt(PPh$_3$)$_2$(C$_7$H$_{10}$) and Pt(dppe)(C$_5$H$_6$) are readily protonated even by weak acids such as water or methanol to give 8-cyclohexenylplatinum(II) complexes (ref. 8, 14)(eq. 4). The cyclopentenyne complex 8

![Diagram](image-url)
METAL COMPLEXES OF ARYNES

Aryne metal complexes are implicated as intermediates in the thermal decomposition of bis(aryl) or (aryl)(methyl) derivatives of the early transition elements and of uranium and thorium (ref. 15). The first structurally characterized mononuclear benzyne complex, TaCp*(C,H,Me), was made in this way (eq. 6) (ref. 16); subsequently aryne complexes of zirconium (10) (ref. 17) and rhenium (11) (ref. 18) (eq. 11,12), and bis(benzyne) complexes of niobium and tantalum (ref. 19), have been made similarly and structurally characterized.

\[\text{TaCp}^*(\text{C}_2\text{H}_4\text{C}_2\text{H}_3)_3 \xrightarrow{\Delta} \text{TaCp}^*(\eta^2-\text{C}_2\text{H}_4)(\text{CH}_2)_2 + \text{CH}_4 \]
(6)

\[\text{ZrCp}_2(\text{C}_2\text{H}_4)_2 \xrightarrow{\Delta} \text{ZrCp}_2(\eta^2-\text{C}_2\text{H}_4)(\text{PMe}_3) + \text{C}_4\text{H}_6 \]
(7)

\[\text{Re}((\text{C}_2\text{H}_4\text{C}_2\text{H}_3)_4 \xrightarrow{\text{PMe}_3 + \text{x.t.}} \text{Re}((\text{C}_2\text{H}_4\text{C}_2\text{H}_3)_4(\eta^2-\text{C}_2\text{H}_4\text{C}_2\text{H}_3)\text{PMe}_3)_2 + \text{C}_6\text{H}_5\text{CH}_3 \]
(8)

Unfortunately this method does not seem to be applicable to the later transition elements. The first mononuclear nickel(0)-benzyne complex Ni(Cy,PCH,CHPCy,)(C,H,4) (12) was made by oxidative addition of o-dibromobenzene to the nickel(0)-ethylene complex, Ni(Cy,PCH,CHPCy,)(C,H,4) (13), and reduction with 1% sodium amalgam of the resulting 2-bromophenyl nickel(II) complex (Fig. 3) (ref. 20). We have extended this procedure to prepare the platinum analogue of 12 (ref. 21), and benzyne complexes of nickel(0) and platinum(0) containing monodentate trialkylphosphines, i.e. ML (C,H,4) (M = Ni, Pt; L = PCy,, PPr,, PEt,) (ref. 22). In the case of platinum, 13% sodium amalgam is ineffective and it is necessary to use 43% sodium amalgam as the reducing agent. Analogous PMe, and PPh complexes cannot be made in this way. Fortunately, the triisopropylphosphine ligands of M[PPr,]2(C,H,4) can be replaced completely or partly by other tertiary phosphines, so that a range of benzene complexes containing tertiary phosphines of varying size and basicity is now available. The bis(triphenylphosphine) complexes M[PPh,]2(C,H,4), however, remain elusive.

Fig. 3. Preparation of Ni(Cy,PCH,CH,2PCy,)(C,H,4) (12)

The nickel(0)-ethylene complex 13 behaves similarly to a reactive diene (eq 1) in its ability to trap free benzene generated by the action of LiTMP on fluorobenzene (eq. 9). The 31P NMR spectra show that benzyne complex 12 is formed in 15-20% yield, together with other unidentified products (ref. 23).

Preliminary studies reveal marked differences in the reactivity of aryne complexes of different transition elements. The zirconium complex 10 acts as a source of the unsaturated fragment ZrCp,(C,H,4), which readily undergoes insertion into the metal-benzyne bond with many multiply bonded molecules (e.g. alkenes, alkynes, ketones, nitriles) (ref. 17, 24). The nickel complex 12 similarly inserts methyl iodide, CO, ethylene, and dimethyl acetylenedicarboxylate (ref. 20). In contrast, the rhenium complex 11 is unaffected by most of these reagents (ref. 18). These differences are probably related to the ease with which a coordination site can be made available to the incoming molecules, and to steric effects.

The nickel- and platinum-benzyne complexes are very sensitive to protonic solvents. The nickel complexes react rapidly with primary and secondary alcohols to give alkoxides; these are unstable at room temperature and eliminate benzene with formation of a nickel(0) complex of the corresponding aldehyde or ketone (eq. 10)
The platinum (II) methoxide Pt(OMe)(C,H,)(Cy,PCH2CH2PCy,) made from Pt(Cy,PCH,CH,PCy,)(C,H,) and methanol is stable at room temperature, but is rapidly hydrolysed by water to the corresponding hydroxide. The platinum(II) alkoxides made from PtL2(C,H,)(L = PEt, PPr,) decompose at room temperature, but in a different way from the nickel complexes. The products are trans-PtL2(C,H,)L2 and, presumably, the corresponding aldehyde or ketone (eq 11) (ref. 22).

METAL COMPLEXES OF BENZDIYNE

In view of the successes with cycloalkynes and benzyne, it is clear that transition elements should be able to stabilize even more strained small rings containing several triple bonds. Two examples are the isomers 1,3- and 1,4-benzdiyne, derived by removal of four substituents from a benzene ring (Fig. 4). These molecules are unknown in the free state, although synthetic equivalents have been generated by treatment of 1,2,3,4- and 1,2,4,5-tetrabromoarenes with two equivalents of an organolithium reagent (ref. 25).

Buchwald et al (ref. 26) have recently reported the formation of di-zirconium complexes of both isomers, 14 and 15, by thermal decomposition of the p-phenylene-zirconocene complex 16 in the presence of trimethylphosphine (eq. 12). The di-zirconium complex of 1,4-dimethoxy-1,4-benzdiyne (14) has been structurally characterized.

This methodology cannot be used to make dinickel(0) or diplatinum(0) complexes. The ideal precursors to 1,4-benzdiyne complexes of these elements would seem to be 2,5-dibromobenzeno-1,4-diy metal complexes 18.

We have been unable to make such compounds by double oxidative addition of 1,2,4,5-tetrabromoarene to nickel(0) and platinum(0) precursors. In the case of platinum, however, double oxidative addition of 2,5-dibromo-1,4-benzenedicarboxylic acid chloride to Pt(PPh,3), and subsequent thermal elimination of CO and replacement of PPh,3 has given the desired precursors 19 and 20. These can be reduced by 43% sodium amalgam to give the first diplatinum(0) complexes of 1,4-benzdiyne 21 and 22 in yields of 10-30% (eq. 14).
In the case of nickel, a different approach has been used, which is based on the ability of the nickel(0)-ethylene complex 13 to trap free benzyne (eq. 9). Treatment of the 4-fluorobenzynenickel(0) complex 23 with a large excess of LiTMP in the presence of 13 gives the first dinickel(0) complex 24 (eq. 15) (ref. 23). The yield of 24 is remarkably high (60-70%), which may imply that the likely intermediate, Ni(Cy,PCH2PCy2)(1,4-benzdiyne), fairly long-lived. The geometry and dimensions of 24 are similar to those of the benzyne complex 12, the C,H2Ni, moiety being essentially planar; the alkyne C-C distances are 1.313(12) Å, and the remaining C-C distances are in the range 1.40-1.42 Å.

REFERENCES
22. M.A. Bennett, T. Okano, and H.P. Schwemlein, unpublished work.
27. M.A. Bennett and T. Okano, unpublished work.