Regioselectivity, Stereoselectivity and Catalysis in Intermolecular Pauson–Khand Reactions: Teaching an Old Dog New Tricks

Sabine Laschat,* Armand Becheanu, Thomas Bell, Angelika Baro
Institut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
Fax +49(711)6854285; E-mail: sabine.laschat@oc.uni-stuttgart.de
Received 18 July 2005
Dedicated to Prof. Henning Hopf on the occasion of his 65th birthday.

Abstract: Since its discovery in the early seventies the intermolecular Pauson–Khand reaction has made considerable progress towards a powerful synthetic method. This account describes the major accomplishments with respect to reactivity, stereoselectivity and catalytic versions, which have been achieved over the last decade and summarizes mechanistic information being obtained by theoretical and experimental studies.

1 Introduction
During their studies of cobalt–alkyne complexes in 1971 Pauson and coworkers reported the formation of cyclopentenone 3 by treating acetylene dicobalthexacarbonyl 2a with ethylene (Scheme 1).1

\[
\text{H} = \text{H} + \text{Co}_2(\text{CO})_8 \xrightarrow{-2 \text{CO}} \text{Co}_2(\text{CO})_6 + \Delta \xrightarrow{+} \text{3} \]

Scheme 1

Originally discovered by serendipity, the cobalt-mediated [2+2+1] cocyclization of an alkyne, an alkene and carbon monoxide to cyclopentenone, commonly known as the Pauson–Khand reaction, has grown into a powerful method in organic synthesis. Cyclopentenones are very versatile building blocks for natural products, pharmaceuticals and fine chemicals2 such as prostaglandins 4, isocarbacyclins 6, sesquiterpenes 5, and jasmonates 7 (Scheme 2).

The mechanism of the Pauson–Khand reaction, initially proposed by Magnus,3 has now been widely accepted (Scheme 3). In the presence of Co₂(CO)₉ the alkyne forms the tetrahedral dicobalt complex 8. After loss of CO, the alkene is coordinated to give the alkene complex 9, which undergoes insertion of the alkene moiety into the sterically least hindered Co–C bond. Subsequent CO insertion gives rise to the cobalt acyl complex 11. Extrusion of one Co(CO)₃ fragment yields the cobaltacycloprenene complex 12, which is finally converted to the cyclopentenone 13 by reductive cleavage of Co₂(CO)₆. Except the formation of the stable and isolable cobalt–alkyne complex 8, however, there was no experimental evidence for this mechanism until recently.

Since the early reports by Pauson it was found that several other complexes containing transition metals such Fe,4 Ru,3 Rh,6 Ni,7 Cr,8 Mo,9 W, Ti,10 and Zr11 can be used for this cocyclization.

In 1981 Schore reported the first example of an intramolecular Pauson–Khand reaction (Scheme 4).12 Despite this initial delay the intramolecular variant made much more progress over the last two decades particularly with regard to reactivity, stereoselectivity and catalysis as compared to the intermolecular counterpart.
Based on our own research efforts in this area, the following article will focus on the various above-mentioned issues of the intermolecular Pauson–Khand reaction with some selected examples of the intramolecular version. Although the intermolecular Pauson–Khand reaction proceeds in a highly convergent fashion and tolerates a variety of functional groups such as ethers, alcohols, tertiary amines, thioethers, ketones, acetals, esters, amides, aryl and alkyl halides, heterocycles, vinylethers and -esters, it is limited to reactive alkenes such ethylene, allene and strained cyclic alkenes. Sterically hindered alkenes are disfavored. In many cases, yields are only moderate. Regio- and stereoselectivity are often difficult to control. And last but not least a catalytic version is out of sight.

2 Reactivity: Improvement by Additives

One of the earliest attempts to improve the reactivity was described by Smit\(^{13a}\) (Scheme 5). By adsorption of the cobalt–alkyne complex \(16\) to silica gel and performing the reaction without any solvent (dry state adsorption conditions) reaction rate and yield of the intramolecular Pauson–Khand reaction could be dramatically increased.
Later Schreiber, Krafft, and Chung discovered the accelerating effect of tertiary amine N-oxides, which is probably due to the oxidative removal of one CO ligand from the cobalt–alkyne complex (Scheme 6).

Later Schreiber, Krafft, and Chung discovered the accelerating effect of tertiary amine N-oxides, which is probably due to the oxidative removal of one CO ligand from the cobalt–alkyne complex (Scheme 6).

![Scheme 3](image1)

Scheme 3

Scheme 4

Scheme 5 *Reagents and conditions:* Method A: isooctane, 24 h, 60 °C, 17: 29%; Method B: SiO2, O2, 0.5 h, 45 °C, 17: 75%

A plethora of other Lewis bases such as dimethyl sulfoxide, cyclohexylamine, aqueous ammonium hydroxide (in dioxane), and sulfides has been developed in order to enhance Pauson–Khand reaction rates. Particularly n-butyl methyl sulfide turned out to be successful, where other additives failed (Scheme 8).

In order to circumvent the major disadvantage of n-butyl methyl sulfide, its unpleasant odor and high volatility, Kerr prepared a sulfide tethered to a Merrifield resin (Scheme 9). Even with sterically hindered cobalt–alkyne complexes such as 2d high yields could be maintained over at least five cycles.

However, a disadvantage of the amine N-oxides is their need in large excess (3–6 equiv). A solution to this problem has been recently reported by Kerr, who developed a polymer-supported morpholine-N-oxide which could be recycled up to five times by treatment with Davies reagent (Scheme 7). This result is particularly relevant for the use and recycling of chiral amine N-oxides for stereoselective Pauson–Khand reactions (see chapter 4.4).

![Scheme 6](image2)

Scheme 6 *Reagents and conditions:* Method A: DME, 4 h, 60–70 °C, 19: 45%; Method B: Me3NO (3 equiv), CH2Cl2, 2 h, 0 °C, 19: 80%

![Scheme 7](image3)

Scheme 7

![Scheme 8](image4)

Scheme 8 *Reagents and conditions:* (i) Toluene, reflux, 3 d, 24: 23%; (ii) NMO (6 equiv), CH2Cl2, r.t., 10 min, 24: decomplexation; (iii) n-BuSMe (4 equiv), Cl(CH2)2Cl, 83 °C, 1.5 h, 24: 85%

![Scheme 9](image5)

Scheme 9

Synlett 2005, No. 17, 2547–2570 © Thieme Stuttgart · New York
A completely different approach to rate enhancement utilizes solvent effects. Especially water has been identified as a useful reaction medium for many organic reactions.22 In this respect recent results by Krafft should be mentioned. Thermal intermolecular cocyclization in aqueous solution in the presence of cetyltrimethylammonium bromide (CTAB) gave the desired enone 27 in good yield (Scheme 10).23

Scheme 10

We have explored the scope and limitations of ionic liquids as novel solvents for intermolecular Pauson–Khand reactions.24,25 Although the amine \textit{N}-oxide promoter could be circumvented by an ionic liquid such as [bmim]PF\textsubscript{6}, a biphasic system of [bmim]PF\textsubscript{6}/methylcyclohexane (MCH) not only made the use of low boiling CH\textsubscript{2}Cl\textsubscript{2} obsolete, but also improved the work up, particularly the separation of the desired cyclopentenone from cobaltoxide and amine \textit{N}-oxide residues, which remained in the polar phase (Scheme 10).

As mentioned in the introduction, the use of strained bicyclic alkenes and ethylene must be considered as serious limitation of substrates. Particularly, terminal alkynes could not be used in intermolecular Pauson–Khand reactions. Ogasawara presented a clever solution to this general problem (Scheme 11).26

Scheme 11 \textit{Reagents and conditions: Method A: Me\textsubscript{3}NO, THF, \textdegreeC 20 to r.t., 12 h, 30: 56%; Method B: cHexNH\textsubscript{2}, Cl(CH\textsubscript{2})\textsubscript{2}Cl, reflux, 20 min, 29: 40%}

Alkene and alkyne were tethered via an ether moiety and thus, the overall Pauson–Khand reaction occurred intramolecularly. Careful choice of the reaction conditions allowed to accomplish a reductive cleavage of the tether in the final step giving the bicyclo[3.3.0]octenone 29 in 40% yield.

In a related work Pagenkopf employed silicon-tethered enynes 31 derived from propargylic alcohols and vinylsilanes for isoprostan synthesis (Scheme 12).27 Surprisingly, the complete absence of water and additives, respectively, turned out to be deleterious for the Pauson–Khand reaction. In the presence of additives only decomposition products from enyne 31 were observed. However, when the reaction was carried out in acetonitrile with 1% of water, the cyclopentenone 32 was isolated, thus demonstrating the synthetic potential of silyloxy as a traceless linker.

Scheme 12

Simultaneously, Brummond developed Mo-promoted [2+2+1] cocyclizations of silicon-tethered allenes (Scheme 13).28 Tethered allene-yne 33 was converted to the bicyclic enone 34. Subsequent \textit{E/Z} isomerization with 1,3-propanedithiol provided the pure \textit{E}-isomer, which was submitted to DIBAL reduction followed by fluoride-induced cleavage of the vinyl–silicon bond to give the allylic alcohol 36. The latter was further converted to the prostaglandin derivative 35.

Scheme 13

While looking for oxygenated cyclopentenone, Kerr and Pauson studied vinyl esters and ethers as starting materials.29 However, treatment of cobalt–alkyne complex with vinyl benzoate 37b in the presence of NMO did not give the desired oxygenated product, but cyclopentenone 38 (Scheme 14). The reductive cleavage occurred only under inert conditions. After this unexpected outcome, Kerr and Pauson realized the potential of vinyl esters and even vinyl bromides as ethylene equivalents (Scheme 14). The strategy was applied in the total synthesis of (+)-taylori-one 39.

Synlett 2005, No. 17, 2547–2570 © Thieme Stuttgart · New York
While a great deal of experimental effort has been spent on modified reaction conditions in order to enhance the rates, the observed large reactivity differences between various alkenes in intermolecular Pauson–Khand reactions still remained unclear. For example, in the intermolecular thermal version the following reactivity order was found: cyclohexene < cyclopentene < norbornene. Very recently, Milet, Greene and Gimbert shed some light on this important question by using DFT and ONIOM methods. They anticipated that the insertion of the alkene into the Co–C bond (9 → 10, Scheme 3) is the rate-determining step and the LUMO (π* orbital) of the olefin plays an important role in olefin–Co back-donation and creation of the new carbon bond by overlapping with the HOMO of the alkyne Co2(CO)5 complex (Figure 1). Thus, transition states for cobaltacycle formation between propyne Co2(CO)5 and cyclopentene, cyclohexene and norbornene, respectively, were calculated and a strong correlation between HOMO/LUMO gaps and the relative reactivity of the olefin was found.

Although the majority of intermolecular Pauson–Khand reactions utilizes either cyclopentene, norbornene, norbornadiene and derivatives thereof, Cazes and Pericas demonstrated that allenes, electron-poor alkenes and even cyclopropene are useful substrates for the intermolecular cyclization. For example, treatment of cobalt–alkyne complex 2e with moderately electron-rich allene 41a gave 74% of a 95:5 mixture of cyclopentenones 42 and 43, while the corresponding electron-poor allene 41b resulted in the formation of cyclopentenones 42 and 44 (47%, 70:30; Scheme 15).

In order to explain the results three competing pathways were proposed (Scheme 16) starting from the allene complex 9a. Allene insertion leads either to complex 48, 49 or 50. Further insertion of CO, reductive elimination and decomplexation gave the products 42–44.

Cazes also investigated the reaction of cobalt–alkyne complexes with electron-poor alkenes (Scheme 15). In contrast to previous observations Michael acceptors such as methyl acrylate 45a gave under NMO activation the desired cyclopentenone 46a in 59% yield. However, the reaction was very sensitive to steric effects and the corresponding methyl methacrylate 45b did not give any trace of product 46b.

A rather surprising discovery was made by Pericas and Riera regarding cyclopropene as a starting material for Pauson–Khand reactions (Scheme 17). While the NMO-promoted Pauson–Khand reaction of cobalt–alkyne complexes 2d proceeded eventless, the obtained bicyclo[3.1.0]hex-3-en-2-one 51 underwent a photochemical rearrangement to an ortho-substituted phenol 52.

3 Regioselectivity: Some Mechanistic Struggles

Whereas the intramolecular Pauson–Khand reaction results in only one regioisomer, the corresponding intermolecular version always leads to product mixtures. A typical example is given in Scheme 18.
When we started our investigations on the regioselectivity of intermolecular Pauson–Khand reactions employing norbornenes, surprisingly little work has been done on unsymmetrically substituted bridged bicyclic alkenes. According to the commonly accepted mechanism the cocyclization is initiated by the formation of cobalt–alkyne complex 55 with a tetrahedral Co2C2 core (Scheme 19).

Under thermal conditions or in the presence of amine N-oxide promoters complex 55 is assumed to undergo decarbonylation at the basal (equatorial) carbon monoxide, which is oriented anti relative to R1 followed by coordination of an alkene to give alkene complexes 56a and 56b. The regioselectivity with respect to the alkene is due to steric hindrance in the insertion step 56a → 57 versus 56b → 58. The less hindered face of the alkene is inserted into the less hindered Co–C bond. For alkenes with sufficiently large substituents R2, conformation 56a and thus, cyclopentenone 57 is preferred. However, with most alkenes mixtures of regioisomers 57, 58 are obtained.

Upon treatment of norbornene diester 59a with various alkenes 1b–f in the presence of NMO we observed a dependence of the regioselectivity on the steric hindrance (Scheme 20). While linear unbranched alkynes yielded preferably regioisomer 60, the ratio was reverted in favor of regioisomer 61, when tert-butyl-substituted acetylene 1f was employed. During these experiments an unexpected temperature effect was found (Scheme 21). For example, the Pauson–Khand reaction of norbornene diester 59a with propargylic alcohol 1e yielded at low temperature regioisomer 60d as the major product, whereas at elevated temperatures regioisomer 61d was favored. This reversal of...
the regioisomeric ratio was observed in various solvents (toluene, CH₂Cl₂, THF), albeit at different temperature ranges.

Scheme 21

From these results we have developed the following mechanistic rationale (Scheme 22). In contrast to the literature proposal we assumed removal of an axial CO ligand from the prochiral cobalt–alkyne complex resulting in the formation of diastereomeric alkene complexes exo-Si and exo-Re. Newman perspectives of these two complexes rationalize that due to the preference to insert the olefin into the least hindered alkynyl carbon atom at low temperatures and with alkynes bearing small substituents R complex exo-Si should be favored, leading to product 60. However, at elevated temperatures and with bulky substituents R complex exo-Re should be preferred giving product 61. Our experimental results were further supported by Cazes,38 who studied the regioselectivity of 7-oxanorbornenes. However, the question axial versus equatorial alkene complex still remained open.

Almost simultaneously, Arjona, Plumet39 and Tam40 discovered remote substituent effects on the regioselectivity in Pauson–Khand reactions of 2-substituted norbornenes, 7-aza- and 7-oxanorbornenes. Moderate levels of regioselectivity were observed for norbornenes (Scheme 23),40 while the regioisomeric ratio increased considerably for 7-oxanorbornenes 63.39a

Moreover, the regioselectivity increases with increasing electron withdrawal by the remote substituent. Semi-empirical calculations indicated a polarization of the alkene which is controlled by the remote substituent.40 Remarkably, the presence of a bromine atom in the alkene moiety of 7-oxa- and 7-azanorbornenes not only could be used to revert the regioisomeric ratio, but also a reductive dehalogenation step leads to removal of the bromine atom from the product during the progress of reaction. The bromine atom is thus acting as a traceless controller (Scheme 24).

According to Cazes41 silyl groups at the alkynyl are useful to control the regioselectivity in Pauson–Khand reactions employing allenes. While the cobalt–alkyne complex 71a with one silyl group yielded a mixture of cyclopentenones 73–75, the corresponding disilyl-substituted cobalt–alkyne complex 71b gave exclusively regioisomer 73 (Scheme 25).

Concerning allene cocyclization Cazes proposed coordination of the allene on an axial vacant ligand site of the cobalt atom.42 For Pauson–Khand reactions with vinylenethenes the regioselectivity turned out to be strongly dependent on the reaction conditions.43 Under thermal conditions dihydrofuran 76 gave a mixture of regioisomers 77, 78, whereas the NMO-promoted reaction yielded exclusively compound 77 as a single regioisomer (Scheme 26).
While the above-mentioned experimental work was in progress, Milet, Gimbert and Greene published two theoretical studies.44,45 From DFT calculations of cobalt–propyne complexes bearing the alkene moiety either at an axial position or at one of the two equatorial positions it was concluded that the initial position of ethylene (and other olefins when pseudorotation is relatively facile) does not determine the regiochemistry in the Pauson–Khand reaction, because the barrier for pseudorotation of CO and ethylene can easily be overcome at room temperature.44 However, for the insertion step the complex with the axially coordinated alkene runs through the lowest lying transition state and thus, must be considered seriously. The second study dealt with the regiochemical outcome of the Pauson–Khand reaction of substituted acetylenes with norbornene.45 The experimentally observed regioisomeric preference shown in Scheme 27 cannot be explained simply by steric arguments.

Scheme 27

For example, while ethyl propiolate 1h gave preferably isomer 79b, ethyl butynoate 1m afforded regioisomer 79g as the major product. Therefore, Milet, Gimbert and Greene used DFT to examine whether electronic differences in the acetylenic substituents are involved in controlling the regioselectivity.45 From calculations of atomic charges of the alkyne carbon atoms by natural population analysis it became evident that indeed propyne is strongly polarized, with the terminal alkyne carbon carrying a higher charge density as compared to the internal alkyne carbon. Ethyl propiolate 1h is only weakly polarized and thus, steric effects are becoming predominant. In contrast, ethyl butynoate 1m is strongly polarized in the opposite direction, resulting in a large charge density at the α-carbon relative to the ester group. In addition, electronegative substituents on the alkyne should strengthen the acceptor properties of the bridging ligand, which would result in reduced back-donation from the metal into the π* orbitals of the CO ligands. This proposal could be verified by examination of the CO absorptions in the IR spectra of the cobalt–alkyne complexes. The trans-effect together with the difference in electron density on the two acetylenic carbons in the complex should therefore be responsible for a discriminate loss of CO. The mechanism could be elegantly verified by employing an alkyne with two aryl substituents of similar size but with different electronic properties. As suggested by the calculations regioisomer 81 was obtained as the sole product (Scheme 28).
4 Stereoselectivity

In order to differentiate between the enantiotopic faces of the prochiral cobalt–alkyne complex (Scheme 29), four different strategies are conceivable: i) chiral precursors (ex chiral pool), ii) chiral auxiliaries, iii) chiral cobalt complexes, and iv) chiral additives.

Scheme 29

4.1 Chiral Precursors

Marco-Contelles used an ex chiral pool strategy to obtain the iridoid aglycon 85 (Scheme 30). Starting from the carbohydrate-derived enol ether 82, the enyne 83 was prepared, which underwent amine N-oxide-promoted co-cyclization to the tricyclic cyclopentenone 84, which was further converted to the target compound 85.

Scheme 30

As described by Grossman the chiral C₂-symmetric bisenyne 86 was converted by a twofold Pauson–Khand reaction to the tethered pentalenedione 87, which was further converted to the chiral cyclopentadienyl ligand 88 (Scheme 31).

Scheme 31

4.2 Chiral Auxiliaries

The vast majority of stereoselective intermolecular Pauson–Khand reactions is based on chiral auxiliaries, which are either attached to the alkene or the alkyne. For example, chiral sulfoxides have been successfully used for both alkenes and alkynes. Carretero reported good to excellent diastereoselectivities for amine N-oxide-promoted cocyclizations of cobalt complexes and arylvinyl-sulfoxides such as (R)-89 (Scheme 32).

Scheme 32

Treatment of alkyne complex 2f with arylvinylsulfoxide (R)-89 yielded the cyclopentenone 90 in 62% as a diastereomeric mixture (dr 93:7), which was converted in three steps into the antibiotic (–)-pentenomycin (91, 44% yield, >99% ee). Presumably the N,N-dimethylamino group chelates the cobalt atom which coordinates the alkene, thus increasing the steric bias in favor of one diastereomer. This hypothesis is supported by observations that arylvinylsulfoxides without an amino anchor gave lower diastereoselectivities.

In contrast, attaching the sulfoxide auxiliary to the alkyne gave rather disappointing results. Pericas and Riera unexpectedly found an easy racemization of alkynyl sulfoxide cobalt complex 2g resulting in low diastereoselectivities of the corresponding cyclopentenone 92 (Scheme 33). Chiral oxazolidin-2-ones proved to be very useful auxiliaries for alkynes, as was shown by Moyano and Pericas (Scheme 34).
Semiempirical calculations (PM3) of the cobalt–alkyne complexes clearly indicate that the S-configured chiral auxiliary effectively shields the Re face of the tetrahedral cobalt cluster, therefore directing the alkene to an equatorial anti-position of the Si face as depicted in Scheme 34. Subsequent insertion of the alkene, CO insertion and cleavage of the cobalt fragment gives the major diastereomer 94a. It should be noted that similar yields and diastereoselectivities were obtained under both thermal and amine N-oxide-promoted conditions. When Hsung reexamined the Pauson–Khand reaction of chiral ynamides, endo-products were observed as mixtures together with the expected exo-products. By careful optimization of the reaction conditions he was able to obtain either endo- or exo-products (Scheme 35). This result was later confirmed by Riera and Verdaguer. Unfortunately, no clear mechanistic rationale could be drawn.

DFT calculations suggest that the dialkylamino substituent is assisting and directing the dissociative loss of CO through a trans-effect (Scheme 36).

Oppolzer’s bornane-2,10-sultam (100, Scheme 37) proved to be a highly efficient auxiliary for intermolecular Pauson–Khand reactions giving exceptional diastereoselectivities. Based on DFT calculations it was assumed that the extremely efficient chirality transfer is due to chelation of one of the cobalt atoms by the sulfoxide moiety and subsequent rate-determining formation of the alkene complex at this specific coordination site.

Although previous studies by several groups have suggested that chelating effects of the chiral auxiliary might contribute to enhanced diastereoselectivity, this issue has not been thoroughly investigated until Pericas, Riera and Greene reported their results in a series of papers. They anticipated that an additional thioether moiety at the chiral auxiliary would serve as an internal promoter which replaces one CO ligand and is further substituted by the alkene. When complex 101 bearing a camphor-derived auxiliary (Scheme 38) was generated at typical thermal conditions minimizing conversion to complex 102 and further treated with norbornene the desired cyclopentenones 103, 104 were obtained with excellent yields albeit with a meager diastereoselectivity of 60:40 in favor of compound 103.

By using chiral C₂-symmetric ynamines 98 Pericas improved the reactivity in thermal Pauson–Khand reactions dramatically. Despite the high instability of the cobalt–alkyne complexes the corresponding cyclopentenones 99 were obtained even at −21 °C with good diastereoselectivities (Scheme 36).
In contrast, conversion of complex 101 to the chelated complex 102 by treatment with NMO and subsequent addition of alkene resulted even at −20 °C in exceptional diastereoselectivities. From detailed studies, NMR investigations of the equilibrium between the two complexes 101, 102 and DFT calculations a mechanistic picture emerges in which chelation of the axial position at the Re face is preferred and formation of the major diastereomer 103 occurs through a sequence of the most stable intermediates. Because even a slight excess of NMO had a deleterious influence on the diastereoselectivity, Pericas and Riera developed an amine N-oxide free method, in which the chelated complex 102 is formed under purely thermal conditions by simply heating to 55 °C prior to alkene addition and insertion at subambient temperatures. The chiral auxiliary could be further used for a stereocontrolled conjugate addition. The auxiliary was removed by treatment with SmI₂ and subsequent tandem retro Diels–Alder/Lewis acid catalyzed Diels–Alder reaction with maleic anhydride afforded the cyclopentenone 107 (Scheme 39).

The cobalt–alkyne complex 55a was etherified with menthol to give complex 108. Subsequent treatment with Na[CpMo(CO)₃] gave a 1:1 mixture of heterobimetallic complex 109 and its diastereomeric counterpart which could be separated by chromatography. When complex 109 was heated with norbornadiene (18) the cyclopentenone 110 was obtained as a single diastereomer. Control experiments with the corresponding bis-cobalt–alkyne complex showed only a slight diastereomeric excess in the cyclopentenone product 110.

When studying heterobimetallic W–Co and Mo–Co complexes of alkynoates, Pericas and Moyano were surprised to find endo-adducts (Scheme 41).

The chirality of the tetrahedral C₂CoMo core appears to control the diastereoselectivity of the endo-products such as 111. The analogous [MoCp(CO)₂]₂ complexes did not react with norbornadiene (18) to the cyclopentenone, thus indicating that the cobalt atom is the ‘active’ species in these heterobimetallic complexes.

4.3 Chiral Cobalt Complexes

Chiral heterobimetallic alkyne complexes provide an additional tool to accomplish stereoselective intermolecular Pauson–Khand reactions, as was demonstrated first by Christie (Scheme 40).
An alternative approach towards chiral cobalt–alkyne complexes utilized chiral phosphine ligands. This access dates back to 1988 when Pauson and Brunner\(^6\) employed (\(R\))-\(+\)-glyphos (112) to prepare a 60:40 diastereomeric mixture of the cobalt complexes 113a,b which could be separated by chromatography (Scheme 42). Subsequent reaction with norbornene (20) yielded the enantiomerically pure cyclopentenone 27. Kerr modified the original methodology by using mild decarbonylation with amine \(N\)-oxides\(^6\) and thus, obtaining the chiral complexes in high yields.

Scheme 42

However, even under these very mild conditions two serious limitations could not be overcome. First no enantiofacial differentiation of the two enantiotopic cobalt atoms in the prochiral cobalt–alkyne complex could be achieved and secondly the diastereomeric cobalt–alkyne phosphine complexes required tedious chromatographic separations. Because in some cases, even preparative HPLC is necessary, this route is not accessible to large-scale synthesis.

Scheme 43

Encouraged by the promising stereoselectivities of cobalt–alkyne complexes bearing chiral phosphines we initiated a study of various diphosphines. Depending on the distance of the two P atoms and the flexibility of the tether bidentate phosphines should give access to five different cobalt–alkyne complexes, i.e. basal chelated, basal-apical chelated, basal \(anti\)-bridged, basal \(syn\)-bridged, and apical bridged (Scheme 43).

It was known from Bonnet\(^6\), Bird\(^6\), and Cullen\(^6\) that monophosphines such as \(PPh_3\) usually coordinate at the apical position, diphosphines with small bite angles such as \(f_6fos\) prefer the basal chelated geometry, while the basal bridged orientation was obtained for diphosphines with an increased bite angle and a more flexible tether such as dppm or dppe. Diphosphines with a very large bite angle (e.g. dpbb) gave apical bridged complexes. At the outset of our experiments we anticipated that a chiral \(C_2\)-symmetrical diphosphate such as BINAP should prefer a basal bridged coordination mode.\(^6\) By treating (3,3-dimethylbutyne)\(Co_2(CO)_6\) and \((R)\)-BINAP in refluxing THF followed by recrystallization from diethyl ether the corresponding (3,3-dimethylbutyne)\((\{R\}\)-BINAP\)\(Co_2(CO)_4\) complex was obtained as a crystalline solid, which fortunately was suitable for X-ray crystal structure determination. As shown in Figure 2 indeed a basal \(anti\)-bridged coordination mode was found. Further work with achiral diphosphines confirmed that, for example, (phenylacetylene)(dppm)\(Co_2(CO)_4\) also contains a basal \(anti\)-bridged diphosphine ligand (Figure 3).

![Figure 2](image-url)

Figure 2 X-ray crystal structure of (3,3-dimethylbutyne)\((R)\)-BINAP\(Co_2(CO)_4\)

Surprisingly, upon treatment with norbornene (20) both the \((R)\)-BINAP and the dppm complex turned out to be completely unreactive, and neither thermal conditions nor amine \(N\)-oxides resulted in the formation of the desired cyclopentenone. In order to get a deeper insight we carried out some qualitative rate experiments (Scheme 44). (3,3-Dimethylbutyne)\(Co_2(CO)_6\) (114a) and the corresponding complex 114b, where one CO ligand has been replaced by \(PPh_3\), were submitted to thermal and amine \(N\)-oxide-promoted Pauson–Khand reactions. The rate-determining influence of \(PPh_3\) is clearly visible. The effect is
even more pronounced when two CO ligands were replaced by PPh3 or a diphosphine such as dppm. In this case, less than 1% conversion was observed. The decreased reaction rate of the phosphine complex is probably due to the replacement of carbon monoxide by a poorer p*-acceptor ligand thus increasing back-donation between cobalt and the remaining carbon monoxide. This should lead to a retardation of the initial decarbonylation step in the Pauson–Khand reaction. According to the mechanistic scheme proposed for the cocyclization the carbon monoxides in the basal position anti to the larger substituent are usually supposed to be most prone to undergo decarbonylation and subsequent coordination of the alkene. The inertness of the (R)-BINAP complex and the corresponding dppm (and dppe) complexes towards the reaction conditions support this mechanism. The only carbon monoxide that might be accessible for the cocyclization is the basal coordinated C1–O1 and C3–O3. However, the insertion step is very sensitive to steric hindrance and thus, insertion from a basal position such as C3–O3 is disfavored due to steric interactions with the tert-butyl group. In contrast, the other two basal positions are occupied by the phosphine ligand and thus, the Pauson–Khand reaction is completely suppressed. As a consequence, the shutdown of the cocyclization pathway is caused by the decrease of the reaction rate due to the phosphine and the coordination of the bidentate ligand at the ‘wrong’ position, i.e. basal anti instead of basal syn. Another implication of these results is that in the Pauson–Khand reaction of (alkyne)\((R)\)-glyphos\(\text{Co}_2(\text{CO})_6\) the coordination and insertion step presumably takes place at the phosphine-free cobalt atom. The \(\text{Co}(\text{CO})_3\text{glyphos}\) moiety is thus acting as a chiral neighbour that directs the stereoselectivity.

The results obtained so far with \((R)\)-BINAP prompted us to look for chiral diphosphine ligands which would meet the following requirements: a) diastereoselective complexation and b) formation of a chelated complex instead of a bridged one in order to overcome the limitation with \((R)\)-BINAP. We anticipated that the phosphate phosphinite ligand 117 might serve this purpose (Scheme 45).66

![Scheme 44](image)

![Scheme 45](image)

Ligand 116 can be prepared in 6 steps followed by deprotection from \((S)\)-(+) camphorsulfonic acid 115. Heating of phosphine phosphinite 117 in the presence of tolane cobalt complex 118 yielded two cobalt complexes 119a,b (20%) and 119c (21%) with a chelated and bridged geometry. Unfortunately, the spectroscopic data gave no evidence for either apical-basal chelated 119a,b or basal chelated 119c geometry and subsequent Pauson–Khand reactions were therefore expected to be of less mechanistic value. Nevertheless, these bidentate ligands proved to be useful in catalytic asymmetric hydrogenation of methylacetamidocinnamates reaching complete conversion with up to 89% ee.67 Our mechanistic assumptions were further supported by very recent results by Gibson,68 who found conditions to obtain the chelated BINAP cobalt–alkyne complexes, which indeed could be used for enan-
tioselective Pauson–Khand reactions. While our above-mentioned basal anti-bridged BINAP cobalt–alkyne complex was obtained by mixing the cobalt–alkyne complex with (R)-BINAP,65 Gibson first prepared a precatalyst from either Co4(μ-CO)12 or Co4(μ-CO)12 and (R)-BINAP and then added the alkyneto get the chelated complex. Thus, the order of addition seems to play an important role. Gibson speculated that the bridged complex might be an intermediate during epimerization of the chelated complex.

To overcome the deleterious effect of phosphine ligands on the reactivity of the cobalt center Gimbert and Greene pursued a different approach maintaining the excellent stereocontrol.69 The reactivity in Pauson–Khand reactions of cobalt–alkyne complexes increased with increasing electron-withdrawal from the diphosphinoamine ligands with norbornene (20). Although later work by Moyano and Pericas71 confirmed the high reactivity of trispyrrolylphosphine containing cobalt–alkyne complexes, the entioselectivity of the diphosphinoamine ligand could not be improved.70 After considerable experimentation, two equivalents of (R)-BINOL-derived phosphoramidite 121 were found to increase the enantiomeric excess of the reaction with norbornene (20) up to 38% (Scheme 47).

The problems associated with phosphate ligands motivated two other groups to put further efforts in this issue. Christie prepared diastereomeric cobalt–alkyne complexes 109b with menthyl auxiliary and N-heterocyclic carbene ligand (NHC, Scheme 48). The obtained yields and diastereoselectivities of the Pauson–Khand product 110 were excellent, however, the presence of a chiral auxiliary was still necessary. In addition, partial migration of the NHC ligand was observed creating some loss of stereochemical integrity.

Moyano, Pericas and Riera reexamined the possibilities of bidentate phosphinoxazoline ligands on the cobalt atoms (Scheme 49).72 Depending on the steric bulkiness of the substituents at the alkyne and at the oxazoline moiety either chelated complex 122 or complex 123 with monodentate phosphine was observed, which could be interconverted under certain conditions. However, the non-chelated complexes such as 123 gave much better enantioselectivities than the corresponding chelated species (Scheme 49). By using circular dichroism the absolute configuration of the non-chelate complex 123 could be correlated with the absolute configuration of the cyclopentenone product 19. Coordination of the phosphine to the Re face of 123 resulted in 2R-configured cyclopentenone 19.
The epimerization rate of complexes such as 123 is strongly dependent on the alkyne substituent and the rate increases in the order Ph < n-Bu < SiMe3 < i-Bu. Further experiments showed that the intermolecular Pauson–Khand reaction of the pure diastereomeric complexes is stereospecific.73b The only requisite for obtaining high enantioselectivities is that the rate of the cocyclization must be higher as compared to the epimerization. Furthermore, the use of amine N-oxides allowed convenient recycling of the ligand as phosphine oxide. Based on their ground-breaking results with camphor-derived auxiliaries with a tethered thioether promoter Pericas and Riera developed new hemilabile (P,S) ligands named PuPHOS (124)74 and CamPHOS (126)75,76 which are generated from (+)-pulegone (125) and (+)-camphorsulfonic acid (112), respectively (Scheme 50). The authors assumed a coordination pathway, which is also depicted in Scheme 50. The incoming ligand preferably coordinates via P at the axial position. The phosphine then undergoes migration to the equatorial position yielding complex 127b. Final replacement of an equatorial CO at the second cobalt atom should give bridged complex 127c.

In a seminal paper Kerr demonstrated for the first time that brucine N-oxide could be used for this purpose giving 72–78% ee for the reaction of (1,1-dimethyl-prop-2-ynol)Co2(CO)8 with norbornene (20).75 Because nothing was known about the scope and limitation of Pauson–Khand reactions in the presence of chiral amine N-oxides, we investigated the intermolecular cocyclization of norbornene (20) with terminal alkynes 1 in the presence of various chiral amine N-oxides in more detail (Scheme 52).76,77

As shown in Table 1, (–)-sparteine N16-oxide (130), (+)-sparteine N1-oxide (131), (–)-17-oxosparteine N-oxide (132), (–)-nicotine N1-oxide (133) as well as (–)-nicotine N1,N1'-bisoxide (134) resulted only in low enantioselectivities (up to 16% ee) regardless of the alkyne. Remarkably, the enantioselectivities could be considerably improved up to 42% ee by using amine N-oxides with additional donor functionalities such as (–)-quinine N-oxide (136), the tetracyclic N-oxide (135) and (–)-brucine N-oxide (137).

Sterically hindered alkynes (e.g. 1f) and alkynes with hydroxy groups (1c,e) gave higher enantioselectivities. Therefore, hydrogen bonding between the alkyne and the N-oxide seems to play an important role in controlling the enantioselectivity. In order to rationalize the stereochemical results, we assumed hydrogen bonding between the alkyne hydroxy group and the N-oxide preferably at the Si

Scheme 50

Scheme 51

4.4 **Chiral Amine N-Oxides**

Despite the progress in stereoselective Pauson–Khand reactions utilizing chiral auxiliaries or chiral P-ligands, introduction, removal and/or recycling of the auxiliary or ligand must be considered as major limitation. In a completely different approach the prochiral cobalt–alkyne complex 8 is desymmetrized by a chiral amine N-oxide which should lead to the preferred decarbonylation of either Re face or Si face ultimately resulting in the formation of one of the two enantiomeric cyclopentenones 128 (Scheme 51).
The complex undergoes decarbonylation of the axial CO ligand assisted by the hydroxy group of the alkyne moiety acting as a labile ligand, which is replaced by norbornene, norbornene ester or aza-norbornenes. As can be seen from the Newman perspective insertion preferably takes place at the least hindered Co–C-bond, resulting in the formation of complex 138, which undergoes CO insertion and decomplexation to give cyclopentenone 22. Although this mechanistic proposal caused controversy discussions, DFT calculations by Gimbert, Milet and Greene strongly supported this suggested scheme.44 Despite the modest enantioselectivities obtained with amine N-oxides, Nicholas80 and Kerr 81 independently pushed the desymmetrization of cobalt–alkyne complexes with chiral amine N-oxides one step further. Remarkably, both enantiomers of cyclopentenone 22 could be received by using a single source of chirality. That means, while brucine N-oxide (137) resulted in decarbonylation at the Si face, subsequent alkene insertion should give enantiomer 22. However, if PPh3 is added to the mixture directly after decarbonylation, the empty coordination site is immediately occupied by PPh3 and the opposite cobalt complex results. Further treatment with NMO leads to decarbonylation at the more reactive phosphine-free Re cobalt giving the opposite enantiomer ent-22 after alkene insertion.

Scheme 53

One of the earliest examples of catalytic intermolecular cocyclizations was developed by Pauson (Scheme 54).82 While treating norbornadiene (18) with 10 mol% of (acetylene)CO2(CO)6 (2a) in the presence of acetylene and carbon monoxide at 60–70 °C the corresponding cyclopentenone 19c was isolated in 14% yield.

Table 1 Amine N-Oxide-Promoted Pauson–Khand Reaction of Various Terminal Alkynes 1

<table>
<thead>
<tr>
<th>N-Oxide</th>
<th>Alkyne 1</th>
<th>R</th>
<th>Product 129</th>
<th>Yield (%)</th>
<th>ee (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>130</td>
<td>1a</td>
<td>Pr</td>
<td>a</td>
<td>46</td>
<td>13</td>
</tr>
<tr>
<td>131</td>
<td>1f</td>
<td>t-Bu</td>
<td>b</td>
<td>62</td>
<td>12</td>
</tr>
<tr>
<td>132</td>
<td>1b</td>
<td>Ph</td>
<td>c</td>
<td>73</td>
<td>16</td>
</tr>
<tr>
<td>133</td>
<td>1f</td>
<td>t-Bu</td>
<td>b</td>
<td>47</td>
<td>10</td>
</tr>
<tr>
<td>134</td>
<td>1f</td>
<td>t-Bu</td>
<td>b</td>
<td>48</td>
<td>10</td>
</tr>
<tr>
<td>135</td>
<td>1e</td>
<td>CMe2OH</td>
<td>e</td>
<td>57</td>
<td>18</td>
</tr>
<tr>
<td>1f</td>
<td>t-Bu</td>
<td>b</td>
<td>37</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>1n</td>
<td>Pr</td>
<td>a</td>
<td>42</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>136</td>
<td>1n</td>
<td>Pr</td>
<td>a</td>
<td>28</td>
<td>2</td>
</tr>
<tr>
<td>1c</td>
<td>(CH2)2OH</td>
<td>d</td>
<td>68</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>137</td>
<td>1e</td>
<td>CMe2OH</td>
<td>e</td>
<td>67</td>
<td>42</td>
</tr>
<tr>
<td>1n</td>
<td>Pr</td>
<td>a</td>
<td>75</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Scheme 53
Almost 20 years later a truly catalytic system was reported by Rautenstrauch (Scheme 55), in which a TON of 220 for Co₂(CO)₈ was realized in the preparation of 2-pentyl-cyclopent-2-en-1-one (139) as a precursor for methyl dihydrojasmonate. Rautenstrauch proposed that the formation of cobalt clusters such as Co₄(CO)₁₂ might induce a shutdown of the catalytic cycle. Despite the high turnover the scope of this catalytic version was rather limited.

A remarkable breakthrough was achieved, when Buchwald demonstrated in 1996 that titanocene complexes are capable of catalyzing the intramolecular Pauson–Khand reaction of enynes such as 14b. Shortly after that Buchwald developed an enantioselective version by utilizing a chiral _ansa_-titanocene 140 (Scheme 56) which has previously been used for stereoselective Ziegler–Natta polymerization.

The following catalytic cycle was proposed (Scheme 57). Oxidative addition of the enyne 14b to the titanocene dicarbonyl complex which may be either directly used or in situ formed from titanocenedimethyl complex under CO pressure, gave the titanacyclopentene complex 143, which undergoes CO insertion and reductive elimination to yield the final cyclopentenone 15b. Unfortunately, chiral metallocenes were not amenable to catalytic intermolecular Pauson–Khand reactions. At this point further improvement in catalytic intramolecular reactions are reported continuously, while the intermolecular reactions are still lagging behind. Nevertheless, various attempts towards a catalytic intermolecular reaction have been performed, which can be categorized according to the metal, i.e. reactions employing i) cobalt, ii) ruthenium, iii) rhodium and iv) iridium.

5.1 Cobalt-Catalyzed Reactions

It should be noted that Livinghouse discovered a catalytic intramolecular version of the Pauson–Khand reaction employing Co₂(CO)₈ under ultrapure conditions. In order to avoid the use of Co₂(CO)₈ which decomposes upon prolonged storage, Chung developed an in situ method, where the cobalt carbonyl is formed from Co(acac)₂ and NaBH₄ under CO pressure, and by reacting norbornadiene (18) the desired cyclopentenone 19 was obtained almost quantitatively. A related substoichiometric system was described by Periasamy utilizing CoBr₂ and Zn. Sugihara reported that methylidenetricobalt nonacarbonyl (145) catalyzed intra- and intermolecular Pauson–Khand reactions (Scheme 58).

Even Co₂(CO)₈ can be used as a catalyst under suitable conditions. For example, Jeong used supercritical CO₂ as a solvent for catalytic Pauson–Khand reactions of norbornene (20) with terminal alkynes in the presence of 3 mol% of Co₂(CO)₈. However, when employing ethylene instead of norbornene (20) these conditions gave less than 10% of the cyclopentenone. Fortunately, by running the reaction of 1b in supercritical ethylene in the presence of Co₂(CO)₈[P(OPh)₃] or Co₂(CO)₈[P(OMe)₃], 2-phenylecyclopentenone was obtained in good yield without any alkyne.
trimerization as the by-product. The results by Jeong also disproved Rautenstrauch’s notion that Co₄(CO)₁₂ poisons the catalytic cycle.

Scheme 58

Both Co₂(CO)₈- and Co₄(CO)₁₂-catalyzed reactions are promoted by Lewis basic solvents (e.g. DMF, H₂O) or additives (e.g. cyclohexylamine, tributylphosphane sulfide) as was independently reported by Sugihara, Krafft, and Hashimoto. Very recently, the cyclobutadiene equivalent was successfully employed in catalytic cocyclizations by Gibson (Scheme 59).

Scheme 59

When considering the decreased reactivity of cobalt–alkyne complexes bearing phosphine ligands, it was quite surprising that (PPh₃)Co₂(CO)₇ catalyzed the Pauson–Khand reaction without any problems. Moreover, this monophosphine complex turned out to be much more stable than Co₂(CO)₈.

Hiroi studied catalytic reactions of phenylacetylene (1b) and norbornene (20) in the presence of Co₂(CO)₈ and chiral ligands such as (S)-BINAP, (R,R)-DIOP, (S,R)-BPPFOH and (S,R)-PPFA. However, with neither ligand an enantiomeric excess exceeding 10% could be achieved. With regard to immobilization a very promising result was obtained by Chung. Although the yields for intermolecular cocyclizations were much lower as compared to the corresponding intramolecular reactions, cobalt on mesoporous silica proved to be a suitable heterogeneous catalyst.

5.2 Ruthenium-Catalyzed Reactions

The use of Ru catalysts allowed access to unusual substrates. A hetero Pauson–Khand reaction was described by Murai. Dipyridylketone reacted with alkyne to give the (5H)-furanones (Scheme 60). The conversion of the corresponding imine 150 with alkyne afforded under similar conditions the unsaturated γ-lactam 151.

According to Mitsudo Ru₃(CO)₁₂ could also be employed in the catalytic cocondensation of squaric acid derivatives such as 152 and norbornene (20) to yield the cyclopentenone 153 as a single regioisomer (Scheme 61).

5.3 Rhodium-Catalyzed Reactions

With [RhCl(CO)₃] as a catalyst, Narasaka was able to perform intramolecular Pauson–Khand reactions with excellent yields. In contrast, yields for intermolecular reactions were much lower, and unstrained terminal alkenes only resulted in the formation of quinones 157 and 158 (Scheme 62). In order to explore the scope of [RhCl(CO)₃] in more detail, we studied intermolecular reactions of norbornadiene (18) and terminal alkenes such as phenylacetylene (1b). While the use of [RhCl(CO)₃] alone did not give any conversion, the presence of the chelating diphosphine dppe and a Ag(I) salt resulted in the formation of the conjugated diene 159 accompanied by some polymeric by-products (Scheme 63). No trace of the desired cyclopentenone was found. Obviously the CO insertion step is somewhat
The different catalytic activity of Rh complexes in intra- versus intermolecular reactions was also noticed by Chung,107 when treating norbornene (20) and phenylacetylene (1b) with entrapped [Rh(COD)Cl]$_2$. Only 6\% of the desired cyclopentenone 27 could be isolated, whereas intramolecular reactions yielded 79–93\% of the product.

Recently, Wender investigated Rh-catalyzed competing [2+2+1], [4+2], and [2+2+2] cycloadditions.108 The product ratio turned out to be strongly temperature dependent. By simply decreasing the temperature from 80 °C to 60 °C the reaction of alkyne 160 and 2,3-dimethylbutadiene (161) gave 98\% of the cyclopentenone 162 as compared to meager 11\% at 80 °C (Scheme 64).

A major limitation of the above-mentioned catalytic processes is the need of carbon monoxide. Chung elegantly addressed this problem by using an α,β-unsaturated aldehyde instead of an alkene and CO.109 For this purpose heterobimetallic nanoparticles derived from Co$_2$Rh$_2$(CO)$_{12}$ were used as catalysts (Scheme 65). The nanoparticles could be recycled at least five times without any loss of activity. Surprisingly, this catalytic system was completely unreactive towards enynes.

A further modification employing Ru/Co nanoparticles immobilized on charcoal and 2-pyridyl formate as a CO source allowed both inter- and intramolecular cocyclization in excellent yields.110 For intermolecular reactions Chung proposed a mechanism involving a Co-catalyzed Pauson–Khand cycle coupled with a Ru-catalyzed decarbonylation cycle (Scheme 66).

5.4 Iridium-Catalyzed Reactions

Based on Shibata’s promising results with Ir catalysts in intramolecular Pauson–Khand reactions111 we investigated intermolecular Pauson–Khand reactions of alkyne 1b and 1o with norbornadiene (18) and norbornene (20). For example, the reaction of phenylpropyne (1o) and norbornene (20) was the only reaction of catalytic amounts of [Ir(COD)Cl]$_2$ and tol-BINAP in toluene under 1 atm CO gave only 0.3\% of the cyclopentenone 154. Mainly unreacted phenylpropyne was recovered after work up. When norbornadiene (18) was used instead, no conversion was observed.

As shown in Scheme 67, the situation changed when phenylacetylene (1b) was employed. The reaction of 1b with 20 gave 15\% of the cyclopentenone 27 together with the regioisomeric alkyne trimerization products 165, 166 in 16\% and 10\% yield, respectively. Employing 18 under the same conditions, the conjugated diene 159 was isolated in 74\% yield. Although Ir-catalyzed C–C coupling between alkyne and alkene is obviously much faster for norbornadiene (18) as compared to norbornene (20) and even the competing alkyne trimerization is completely suppressed,
the final CO insertion is too slow. In order to improve the catalytic activity of the Ir catalyst, AgOTf was added to the reaction mixture.\(^\text{112}\) In addition, the coordination properties of the solvent were improved by using THF instead of toluene. It turned out that the quality of the Ag(I) salt and the solvent was very critical. In the presence of BINAP and AgOTf the Ir-catalyzed reaction of phenylacetylene with norbornene (20) gave cyclopentenone 27a in 13% as a single regioisomer. Use of dppe instead of BINAP gave a mixture of the regioisomers 27a and 27b in 18–20% overall yield. Upon lowering the reaction temperature from 90 °C to reflux the yield of cyclopentenone 27a could be further improved to 32%. Unfortunately, the use of BINAP or tol-BINAP under these modified conditions did not give the desired cyclopentenone. Both Rh and Ir catalysts appeared to be not suitable to promote C–C coupling and CO insertion efficiently and thus, allow a full catalytic cycle for the intermolecular Pauson–Khand reaction.

6 Theoretical Studies and Some Mechanistic Curiosities

As discussed earlier the original mechanism for the stoichiometric Pauson–Khand reaction which was proposed by Magnus in 1985\(^3\) was commonly accepted despite some disputes about the coordination mode of the alkene. Surprisingly, little theoretical and experimental mechanistic information existed until 2001 a very detailed DFT study by Nakamura appeared.\(^\text{113}\) The results from DFT calculations clearly indicated, for example, that the initial CO loss is rather energy consuming and thus, irradiation\(^\text{87,114}\) or promoters (Lewis bases, tethered donor ligands, etc.) acting as weak ligands enhance the rate of this step. It was also found that the alkene insertion step is the critical stereo- and regiochemistry determining step of the Pauson–Khand reaction. Another result was that migratory insertion of CO at the alkene terminus is energetically favored over competing/alternative pathways. The most important mechanistic finding was that, while the bond-forming events occur only on one metal atom, the other metal atom acts as an anchor and also exerts electronic influences on the other through the metal–metal bond.

Shortly after that, theoretical studies by Milet, Gimbert and Greene\(^\text{44,45}\) emphasized the importance of the trans-effect in governing the regioselectivity. Koch and Schmalz investigated the configurational stabilities of cationic, radical and anionic Co(CO)\(_6\) complexed propargylic species by DFT and found a surprisingly high racemization barrier for the anionic intermediate.\(^\text{115}\) However, experimental evidence was still sparse until Gimbert, Greene and Milet\(^\text{116}\) were able to detect the decarbonylated intermediate 166 by tandem mass spectrometry using negative ion electrospray ionization. Subsequent collision-activated reaction (CAR) with norbornene (20) yielded a molecular ion with m/z = 781, i.e. the corresponding alkene complex (Scheme 68). Complementary DFT calculations revealed the chronology of the early events of the Pauson–Khand reaction in the gas phase. The results perfectly support Nakamura’s calculations and the original Magnus mechanism.

![Scheme 67](image1)

Scheme 67 Reagents and conditions: Method A: [Ir(COD)Cl]\(_2\), BINAP, toluene, 1 atm CO, 110 °C, 12 h; Method B: [Ir(COD)Cl]\(_2\), THF, 1 atm CO, 12 h

![Scheme 68](image2)

Scheme 68

Another combined theoretical and experimental mechanistic study by McGlinchey dealt with the acid-catalyzed rearrangement of cobalt–alkyne complexes such as 167 to alkylidene nonacarbonyl tricobalt clusters 168 (Scheme 68).\(^\text{117}\)

While tandem catalysis employing intramolecular Pauson–Khand reactions has been recently explored in several cases,\(^\text{118}\) only little information was known about intermolecular tandem processes. Towards this goal we investigated the sequential Pauson–Khand reaction/transfer hydrogenation outlined in Scheme 69. We anticipated that the transfer hydrogenation with RuCl\(_2\)(PPh\(_3\))\(_3\) should be compatible with the preceeding Pauson–Khand reaction conditions.\(^\text{119}\) While the two-step process yielded 54% of the diastereomeric ketones 169a,b (dr 81:19) together with 5% of the saturated alcohol 170, the corresponding one-pot reaction was only successful when the base KOH was added after a certain induction period of 2
hours. Monitoring by GC indicated clean conversion to the cyclopentenone 27 within two hours. Subsequent addition of KOH resulted in the formation of diastereomeric ketone 169a,b (dr 58:42) in 57%. The results indicated that in accordance with observations by Sasson120 and Wilkinson121 Ru(H)Cl(PPh3)3 as the major active species preferably adds to the C=C bond rather than to the ketone.

Scheme 69

In contrast, the outcome of this sequential reaction might be also due to an intermediate cobalt hydride species, which is acting as a reducing agent. In the intramolecular Pauson–Khand reactions of enyne 14c in the presence of Co2(CO)8, Krafft isolated in acetonitrile the desired bicyclic enone 171 in 69% yield.122 However, in i-PrOH only the saturated ketone 172 was obtained in 56% (Scheme 70). Deuterium-labeling experiments demonstrate that a hydridocobalt species was involved and that the hydride comes from the solvent isopropanol.

Scheme 70

Acknowledgment

This work would not have been possible without the dedicated work and controversial discussions of our former coworker Volker Derdau whom we would like to thank very much. General financial support by the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie, the Deutscher Akademischer Austauschdienst (DAAD award for A. Becheanu), the European Community (ERASMUS/SOKRATES fellowship for T. Bell) and the Ministerium für Wissenschaft, Forschung und Kunst des Landes Baden-Württemberg are gratefully acknowledged. Special thanks belong to Yves Gimbert, Anne Milet and Andrew Greene from the University of Grenoble for their stimulating discussions and great hospitality.

References

References:

(12) Schore, N. E.; Croudace, M. C.
(14) Shambayati, S.; Crowe, W. E.; Schreiber, S. L.
(15) Krafft, M. E.; Scott, I. L.; Romero, R. H.; Feibelsmann, S.
(16) Jeong, N.; Chung, Y. K.; Lee, B. Y.; Lee, S. H.; Yoo, S.-E.
(18) Sugihara, T.; Yamada, M.; Ban, H.; Yamaguchi, M.; Kaneko, C.
(19) Krafft, M. E.; Bonaga, L. V. R.
(20) Sugiura, T.; Yamada, M.; Yamaguchi, M.; Nishizawa, M.
(21) Kerr, W. J.; Lindsay, D. M.; Watson, S. P.
(22) Reviews: (a) Lindström, U. M.
(23) Krafft, M. E.; Wright, J. A.; Bonaga, L. V. R.
(24) Bécheanu, A.; Laschat, S.