91-500. Optimization
Classical theory of optimization. Kuhn-Tucker conditions. Unconstrained optimization; gradient methods, conjugate gradient methods, variable metric methods, search techniques. Constrained optimization. Approximation methods, projection methods, reduced gradient methods; penalty function methods; computational algorithms. Recent advances in optimization. Use of computer software packages. (Prerequisite: 91-312 or equivalent.) (3 lecture hours a week.)
91-501. Industrial Experimentation and Applied Statistics
Distributions of functions of variables, estimations and tests of hypotheses, power of tests, non-parametric tests, sampling techniques, analysis of variance, randomized blocks. Latin squares and factorial experiments. (Prerequisite: 91-227 or equivalent.) (3 lecture hours a week.)
91-502. Manufacturing Systems Simulation
Discrete-event system simulation. Random number generation. Stochastic variate generation. Input parameters; identification and estimation. Output analysis. Static and dynamic output analysis; initial and final conditions; measures of performance and their variance estimation; confidence interval. Design of experiments. Various sampling techniques. Single and multifactor designs. Fractional designs. Response surfaces. Regeneration method for simulation analysis; Monte Carlo optimization. (3 lecture hours a week.)
91-503. Production and Inventory Control Systems
Analysis of production-inventory systems. Inventory systems; deterministic, single-item and multi-item models; quantity discounts; stochastic, single-period models; periodic review and continuous review models. Production planning. Static demand models; product mix and process selection problems; multi-stage planning problems. Dynamic demand models; multi product and multistage models. Operations scheduling; job shop scheduling; line balancing. New directions in production systems research. (Prerequisite: 91-413 or equivalent.) (3 lecture hours a week.)
91-504. Advanced Operations Research I
Theory and computational techniques for solving linear and integer programming problems. Theoretical foundations of the simplex algorithm. Duality, sensitivity analysis and parametric programming. Network flow methods. Integer programming problems. Cut algorithms, branch and bound, and implicit enumeration methods. Dynamic programming. Recent developments. (Prerequisite: 91-312 or equivalent.) (3 lecture hours a week.)
91-505. Advanced Operations Research II
Probabilistic O.R. models. Markovian decision process. Queueing theory. Single channel and multichannel queueing systems. Queues with general arrival and service patterns. Bulk queues and priority queues. Applications of queuing models. Probabilistic dynamic programming. (Prerequisite: 91-412 or equivalent.) (3 lecture hours a week.)
91-507. Advances in Industrial Ergonomics
Ergonomics and work design; human workload measurement in industry; visual display terminals at the workplace; signal detection and visual inspection; user-computer interaction; human factors aspects of flexible manufacturing systems; effects of individual and combined environmental stressors on human performance. (Prerequisite: 91-415 or equivalent.) (3 lecture hours a week.)
91-508. Reliability Engineering
Basic reliability distributions. Constant failure rate models-exponential reliability function, Poisson process. Time dependent failure models-the Weibull, normal, lognormal distributions. State-dependent systems-Markov analysis. System reliability-system structure function. Reliability growth testing-noon-parametric methods, censored testing and accelerated life-testing. Design for reliability-specification, reliability allocation, failure analysis, system safety. Maintainability and availability. (Prerequisite: 91-327 or equivalent.) (3 lecture hours a week.)
91-509. Computer-Integrated Manufacturing
Development of CIM; the CIM pyramid-key functions. System integration; standards for communications-MAP. Data base as the hub of CIM-types of data base. Role of simulation and support systems-decision support systems and expert systems. Sensor technology, robot vision, and group technology. Impact of CIM. Factory of the future. (Prerequisite: 91-411 or equivalent.) (3 lecture hours a week.)
91-510. Advanced Engineering Economy
Principles and methods for engineering analysis of industrial projects and operations. Criteria for economic decisions, project investment analysis, gain and loss estimating and techniques for economic optimization under constraint are included. Emphasis is placed on the construction and use of analytical models in the solution of engineering economy problems. Elements of risk and uncertainty are included through use of probabilistic techniques. (Prerequisite: 85-313 or equivalent.) (3 lecture hours a week.)
91-511. Stochastic Processes
Stochastic processes. The Poisson process-relationship to exponential, Erlang and uniform probability distributions. Markov chains-basic limit theorem. Continuous time Markov chains--birth-and-death processes, time-dependent probabilities, limiting probabilities, relationship to the exponential distribution, uniformization. Renewal theory-limit theorems, renewal reward processes, regenerative processes, computing the renewal function. Brownian motion and stationary processes. (Prerequisite: Statistics 91-412 or equivalent.) (3 lecture hours a week.)
91-512. Flexible Manufacturing Systems
FMS components, characteristics, operation and control. Planning design and implementation of FMS. Product design, process planning, scheduling, machine control, sensing and system control for FMS. (Prerequisite: 91-413, 91-502, 91-509 or equivalent/permission of instructor.) (3 lecture hours a week.)
91-513. Advanced Manufacturing Technology
Developments in nontraditional methods in EDM and ECM. Trends in automation. Recent developments in manufacturing processes; micromanufacturing—integrated circuits and laser machining. Advances in computer technology, CAD and CAM. Kinematics of manipulation robots, artificial intelligence, monitoring and vision systems. (Prerequisite: 91-321 or equivalent.) (3 lecture hours a week.)
91-514. Engineering Design, Methodology & Applications
Engineering Design is a creative, iterative and often open-ended process subject to constraints. Topics include: design creativity & problem solving, engineering conceptual design & embodiment design, practices for product realization design theories and methodologies, parametric design, probabilistic design, industrial design, design and manufacturing integration, concurrent engineering, materials selection in design, design for x (e.g. manufacturing, assembly), engineering design communication. Significant time is devoted to the applications of design theories and methodologies and to a product/process design realization.(3 lecture hours a week.)
91-515. Artificial Intelligence Applications in Manufacturing
The objective of this course is to teach graduate students how artificial intelligence techniques can be applied to manufacturing operations. Detailed topics to be discussed in this course include: basic knowledge representation methods and problem solving techniques; different search algorithms; introduction to AI high level languages; introduction to the CLIPS shell; AI application in Design; AI application in Operation Management; AI application in Diagnosis; and, AI application in Control.(Prerequisite: 91-503 or 91-504 or equivalent.) (3 lecture hours a week.)
91-516. Computer-Aided Design (CAD)
This course will focus on computer-aided methods and applications. The lectures present basic and generic principles and tools, supplemented with significant hands-on practice and engineering applications. Various topics are studied and practiced using CAD/CAE software, such as engi- neering design and the role of CAD, geometric modelling systems, representation of curves and surfaces, surface modelling, solid modelling and applications, parametric representations, assembly modelling, computer-aided engineering (CAE) and applications, distributed collaborative design, and digital mock-up. (Prerequisite: 91-411 or equivalent.) (2 lecture hours a week and 2 laboratory hours a week.)
91-590. Special Topics
Selected advanced topics in the field of Industrial Engineering. (3 lecture hours a week.)
Current topics include:
Sustainable Manufacturing
Industrial Control & Robotics
Management of Technology
Product Innovation & Design Management
Recent Advances in Industrial Ergonomics
Computer-Aided Modeling of Complex Surfaces
Lean Manufacturing & Supply Chain Management
91-796. Major Paper
91-797. Thesis
91-798. Dissertation